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Abstract— Cloud detection is an essential step in the
application of hyperspectral infrared (HIR) data. In this paper, a
new cloud detection method using a LightGBM algorithm based
on principal component (PC) space is proposed for HIR data
from the High Spectral Infrared Atmospheric Sounder (HIRAS).
Considering the difference of infrared radiation between ocean
and land, day and night, this paper respectively builds the
LightGBM day-land, day-sea, night-land and night-sea models.
The truth cloud fraction of the HIRAS field of view (FOV) is
determined by the collocated cloud masks of the Medium
Resolution Spectral Imager-Il (MERSI) onboard the FY-3D
satellite. The HIRAS infrared channels were transformed into the
leading K PCs as predictors through principal component
analysis (PCA), with the advantages of reducing the correlation
of infrared channels, accelerating model convergence and
prediction. The cloudy FOVs in global datasets are randomly
down-sampling to alleviate the impact of dataset imbalance. The
validation experiments have shown that the LightGBM model
has high accuracy for the completely cloudy and completely
clear-sky FOVs. However, the partially cloudy FOVs are
sometimes detected as the clear-sky. It may be because these
partially cloudy FOVs have prominent clear-sky radiation
properties. The cloud detection performance of the LightGBM
model (accuracy=0.93, HSS=0.85) for land HIR data is better
than that of sea HIR data (accuracy=0.89, HSS=0.65). It may be
because there are more partially cloudy FOVs in the ocean. In
addition, the imbalance of the ocean dataset significantly reduced
its Heidke skill score (HSS=0.65). Compared with the HIRAS Llc¢
cloud cover product, the accuracy of the LightGBM model for
land (sea) HIR data is increased by about 0.22 (0.07). The time
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complexities of the algorithms have shown that the cloud
detection speed of the LightGBM model is approximately 670
times that of the HIRAS/MERSI collocation cloud detection
method. The higher cloud detection accuracy and faster
efficiency are helpful to the operational application of the
LightGBM cloud detection method.

Keywords-component; High Spectral Infrared Atmospheric
Sounder (HIRAS); cloud detection; Machine Learning; LightGBM;
Principal component analysis (PCA); FengYun 3D (FY-3D)

I. INTRODUCTION

The hyperspectral infrared (HIR) atmospheric sounder has
thousands of detection channels, providing high resolution
three-dimensional atmospheric temperature and humidity
structure information with approximately 1km vertical
resolution [1,2]. It is currently one of the most critical
observational data sources for global numerical weather
prediction (NWP) operations centres such as the European
Centre for Medium-Range Weather Forecasts (ECMWF).
Currently, the hyperspectral infrared atmospheric sounders on
operational applications include the Atmospheric Infrared
Sounder (AIRS) [3], the Infrared Atmospheric Sounding
Interferometer (IASI) [4], the Cross-track Infrared Sounder
(CrIS) [5] etc. The HIR data from these sensors significantly
impacts global numerical weather prediction (NWP) [6].



Clouds significantly impact infrared radiation, which is a
far more substantial effect than that from the uncertainty of
atmospheric temperature and composition profiles [7,8]. Cloud
detection is a significant data preprocessing step that still is the
largest source of uncertainty for the assimilation of HIR data in
NWP [9]. The High Spectral Infrared Atmospheric Sounder
(HIRAS) is an essential hyperspectral infrared (HIR) sounder
onboard the FengYun 3D (FY-3D) satellite. It represents a
significant improvement in the Chinese operational infrared
sounding capability [10]. It is necessary to develop an accurate
and efficient cloud detection algorithm to promote the
application of HIRAS data.

There have been many cloud detection methods for HIR
data. Goldberg et al. used the satellite observations and model
simulation data to determine empirical thresholds used for the
clear-sky detection of AIRS over the ocean and land [11].
McNally et al. selected the clear channels that are not affected
by clouds based on the difference between the sounder
measurements and cloud-free model simulations [7,8]. Both of

these cloud detection schemes are affected by model simulation.

Lin et al. developed a double CO2 band cloud detection
method for CrIS to reduce the influence of the model
simulation [9]. However, the double CO2 method cannot detect
the partially cloudy FOV well. In addition, cloud detection of
HIR data is usually done by collocating the cloud mask of the
high-spatial-resolution imager. Li. et al. determined cloud
information of the IASI through collocated cloud products of
the Moderate Resolution Imaging Spectroradiometer (MODIS)
[12]. Eresmaa acquired the cloud information of the IASI FOV
based on observation of collocated Advanced Very High-
Resolution Radiometer (AVHRR) pixel [13]. A similar method
to extend cloud-clearing of CrIS is to use the collocated cloud
products and observations from the Visible Infrared Imaging
Radiometer Suite (VIIRS) [14]. The imager-based method can
provide subpixel cloud information for infrared sounder and
not depend on the model’s background field error [15].
However, the collocation method relies on the cloud products
precision of other sensors and requires high computational
resources. Machine learning provides new ideas to improve the
accuracy and efficiency of cloud detection from HIR data.

In recent years, machine learning has effectively used cloud
detection in satellite remote sensing data [16]. Luo et al. trained
a cloud detection model based on logistic regression for IASI
data, with four spectral channels as predictors [17]. Then,
Zhang. et al. [18] constructed a cloud detection model based on
machine learning for HIR data from Geostationary
Interferometric Infrared Sounder (GIIRS). Luo and Zhang's
machine learning model has high detection accuracy for
completely cloudy and completely clear-sky FOVs. However,
their algorithm cannot accurately detect the partially cloudy
FOVs. The more general partially cloudy FOVs' detection still
needs further research. Liu et al. proposed an artificial neural
network (ANN) cloud detection model based on principal
component space for CrIS HIR data [19]. Liu's ANN model has
an overall accuracy of 93% for the cloud detection of CrIS HIR
data, while the detection effect of clear-sky FOVs in the
unbalanced dataset is not further analyzed. The number of
cloudy FOVs is far more than the number of clear-sky FOVs in
global HIR data. The imbalance of the dataset will reduce the
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detection effect of the minority category (the clear-sky FOVs).
However, the detection of clear-sky FOVs is more critical for
the application of HIR data. The detection effect of the clear-
sky FOV in the unbalanced HIR dataset needs to be further
improved.

The LightGBM is a widely used ensemble learning
algorithm with strong feature extraction capabilities and
generalization performance in many classification and
regression tasks. Therefore, this paper will build a fast cloud
detection model based on the LightGBM algorithm to improve
the cloud detection accuracy and efficiency of HIRAS HIR
data.

The paper is structured as follows. The HIRAS and MERSI
data are presented in Section 2. The cloud detection methods
are described in Section 3. The validations of algorithms are
examined in Section 4. Section 5 summarize this study.

II. HIRAS AND MERSI DATA

HIRAS measures the IR radiation of the earth-atmosphere
system in three spectral bands: the long-wave IR bands
covering 650-1135¢m ™1, the middle-wave IR bands covering
1210-1750cm™1, and the short-wave IR bands covering 2155-
2550cm™! with a spectral resolution of 0.625 at full spectral
resolution. A cross-track scan has 29 fields of regard (FOR)
with 4 fields of view (FOV) on the earth's surface. HIRAS is a
cross-track scanning instrument with a maximum scanning
angle of 50.4°. The radiometric accuracy of HIRAS has been
assessed by comparing the HIRAS observations to radiance
simulations and CrIS measurements, showing a high
measurement accuracy with low radiation noise [20,21]. The
cloud cover products of HIRAS L1c are generated by matching
the cloud mask products of MERSI, which are used to verify
the accuracy of the cloud detection method based on machine
learning.

The MERSI provides radiation observations from 25
spectral bands covering 0.412 pm to 12.0 pum. Its spatial
resolution is about 1 km near the sub-satellite point with a
maximum scanning angle of 55.1° [22]. The MERSI has higher
spatial resolution and larger spatial coverage than HIRAS. The
MERSI L2 cloud masks (CLM) have four confidence levels:
confidently clear, probably clear, probably cloudy, and
confidently cloudy, which are collocated to determine the cloud
fraction of HIRAS FOV.

III. METHOD

A. HIRAS/MERSI collocation cloud detection method

A collocation algorithm proposed by Wang et al. [23] is
adapted to collocate the HIRAS and MERSI data. The line-of-
sight (LOS) is defined as the vector from the sensor location to
the measurement pixels position on the Earth surface. In the
East, North, Up (ENU) coordinate system, the LOS vectors can
be detemlined as (xENu, YENU' ZENU)’

XENU Lsing siny
LOSgny = (yENu) = (L sin ¢ cos 1!)) €))
ZENU Lcos¢



where ¢ is sensor zenith angle, 1 is sensor azimuth angles, L is
satellite range that is the distance between the satellite and the
observation point. L can be approximated as,

L=H/cos¢ (2)

where H is the satellite orbit height. Since the coordinate origin
of ENU varies with the observation position, the LOSgyy is
further converted into the Earth-Centered, Earth-Fixed (ECEF)
coordinate. The rotation equation is expressed as,

X
LOSgcgr = |V | =
—Ssinv —cosvsiny coSvcospu\ [Xgnu
( cosv sinvsinu sinv cos,u) (yENU> 3)
0 cos i sinpu ZENU

where v and u are geodetic longitude and latitude. In ECEF,
the successful matching of HIRAS and MERSI LOS vectors
follow the criterion as,

LOSHIRAS - LOSMERSI
ILOSHIRASI ILOSMERSI]I

> cos G 17) “)

where the LOSyras and LOSygrs; are LOS vectors of HIRAS
and MERS]I, the 1 is FOV angle of HIRAS.

Through the above matching algorithm, the MERSI pixels
in each HIRAS FOV can be determined. There are four values
for MERSI L2 cloud mask products: confidently clear,
probably clear, probably cloudy, and confidently cloudy. To
simplify the problem, the confidently clear and probably clear
pixels are labelled as the clear, and the probably cloudy and
confidently cloudy pixels are marked as the cloudy. The cloud
masks of the matched MERSI pixels are used to generate the
cloud cover of each HIRAS FOVs, defined as the ratio of the
number of cloudy pixels to the total number of pixels. The
HIRAS FOV will be classified as clear-sky or cloudy by an
appropriate threshold of cloudiness. The threshold varies with
different application scenarios. For example, when the
proportion of collocated VIIRS cloudy pixels in CrIS FOV is
greater than 5%, Wang et al. (2017) and Liu et al. (2020)
flagged the CrIS FOV as partially cloudy. A smaller threshold
corresponds to a stricter clear condition. Since the spatial
resolution of HIRAS FOV (16 km at nadir) is lower than CrIS
(14km at nadir), the cloudiness threshold of HIRAS FOV is set
to 10%. When the threshold of cloudiness is greater than 10%,
the HIRAS FOV is marked as cloudy (label=0). Otherwise, the
HIRAS FOV is flagged as clear-sky (label=1). The labels of
HIRAS FOV generated by the collocation mechanism are used
as the truth for model training and accuracy validation.

B. The machine learning cloud detection method based on
PCA

1) Principal component analysis
Due to the strong correlation between the spectral channels
of infrared detectors, all spectral channels as input features will
cause information redundancy. In addition, the measurement
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and transmission process of infrared radiations are often
affected by instrument noise. Principal component analysis
(PCA) is widely used for compression reconstruction and
feature transformation of HIR data[24]. The PCA converts the
dependent variables into linearly independent principal
components (PC) that describe the main variance of the
original data. The instrument noises are nearly evenly
distributed on each PCs [25]. Therefore, PCA has the
advantages of feature transformation, dimensionality reduction
and noise reduction.

The HIRAS HIR dataset is represented by Nxd matrix R,
where N is the number of observation samples and d is the
number of infrared spectrum channels. Firstly, to eliminate the
influence of the magnitude of radiation, R is normalized:

X=R-1)/c (5

where A and ¢ are the mean and standard deviation of each
channel of R, respectively. Then the covariance matrix S of the
normalized X is computed by:

_lyyT
S—NXX 6)

Where T represents the matrix transposition operation.
Furthermore, the singular value decomposition (SVD) of
covariance matrix S is performed by:

S = UAUT (7)

where the dimensions of the matrices S, A, and U are all dxd.
The A is a diagonal matrix composed of d eigenvalues (4; >
Ay > - > 1,) of the covariance matrix S. The U is a matrix
composed of eigenvectors corresponding to eigenvalues of S,
and each eigenvector constitutes the orthogonal unit basis of
the principal component space.

After that, the eigenvectors corresponding to the first K
(K<d) eigenvalues form the linear transformation matrix U_K.
The first K PCs of HIR dataset R are given by:

RK = ULX (8)

The PC dataset R¥ with a larger K represents more original
data information, and the reduction of instrument noise and
redundant information is less obvious.

2) The Optimal machine learning algorithm

No machine learning algorithm can be applied to all
problems. This paper selects the optimal algorithm from five
classic machine learning algorithms for cloud detection of
HIRAS data. The five algorithms are logistic regression [26],
random forest [27], K-nearest neighbour[28], gradient boosting
decision tree (GBDT) [29], and LightGBM [30]. They are
widely used in various classification and regression tasks. Only
1% (about 5033 samples) of HIRAS global data are used to
select an optimal algorithm to reduce memory and time
consumption. The ratio of training and test data is set to 8:2.



All infrared spectrum channels and optical path (1/cos (sensor))
zenith angle)) are used as predictors. The sample label is
generated by the HIRAS/MERSI collocation cloud detection
method in section 3.1. The Hyperopt optimization algorithm
[31] is used to adjust the parameters (as TABLE I) of the five
machine learning algorithms to achieve their best cloud

detection performance. Hyperopt is a Bayesian optimization
method that heuristically searches for the optimal parameters of
a machine learning algorithm from a larger parameter space.
Hyperopt is often more effective than manual tuning, grid
search [32] and random search [33].

TABLE I. PARAMETERS AND SEARCH RANGE OF FIVE MACHINE LEARNING MODELS

Algorithm parameters and searching range

K Neighbors Number of neighbors Algorithm to find neighbors (‘algorithm’):

Classifier (‘n_neighbors’): range(1,50) (‘auto’, ’ball tree’, ’kd tree’, ’brute’)

Logistic The norm of penalization Regularization coefficient (‘C’)

Regression (penalty):(‘11°,’12”) uniform (0.01, 5)

Random Number of tree Minimum samples at split node minimum samples at leaf node Maximum depth of tree

Forest (‘n_estimators’): (‘min_samples_split’): (‘min_samples_leaf’): (‘max_depth’):
range(50,150,10) range(10,400,10) range(4,20,2) range(100,300,10)

GBDT The number of boosting (‘min_samples_split’): Shrinkage rate (‘max_depth’):
(‘num_iterations’): range(10,50,2) (’learning_rate”’): range(8,60,2)
range(10,250,5) uniform(0.01,1)

LightGBM (‘num_iterations’): Maximum leaves of tree (‘learning_rate’): (‘max_depth’):
range(10,400,10) (‘num_leaves’): uniform(0.001, 0.8) (10,400,10)

range(10,400,10)

range(start,stop,step): an ordinal sequence between start and stop with step as the interval. uniform(start,stop): the uniform distribution between start and stop.

The cloud detection performance of machine learning
algorithms is measured by accuracy (ACC) and average
training time (Time, unit: s). The ACC represents the ratio of
the number of cloudy and clear-sky samples correctly detected
by the machine learning model to the total number of test
samples. T means the time of building and optimizing the
machine learning model. The cloud detection performance of

the five machine learning algorithms under the optimal
parameters is shown in TABLE II. The LightGBM algorithm
has the highest accuracy (ACC=0.86), and the model training
time (T=124s) is relatively short. Therefore, this paper will
build a HIRAS global cloud detection model based on the
LightGBM algorithm.

TABLE II. THE CLOUD DETECTION PERFORMANCE OF FIVE ALGORITHMS UNDER OPTIMAL HYPERPARAMETERS.
Algorithm Best parameters POD FAR ACC T (s)
K Neighbors ‘algorithm’="ball_tree’, ‘n_neighbors’=24 0.80 0.20 0.81 57
Classifier
Logistic ‘penalty’="12’, ‘C’=1.91, 0.83 0.19 0.82 3205
Regression
Random ‘n_estimators’=200, 'max_depth’=260, 0.83 0.17 0.84 74
Forest ‘min_samples_leaf’=6, *min_samples_split’=12
GBDT ‘num_iterations’=125, ’learning_rate’=0.38, 0.84 0.16 0.85 1532
‘min_samples_split’=36 *max_depth’=18
LightGBM ‘num_iterations’=140, ’learning_rate’=0.03, 0.86 0.15 0.87 124
‘num_leaves’=160, 'max_depth’=100

The LightGBM algorithm is an efficient implementation
form of the traditional gradient boosting tree (GBDT)
algorithm [30]. Compared with GBDT, LightGBM is more
suitable for classification and regression tasks of high-
dimensional large datasets. LightGBM innovatively proposed
Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) algorithms to improve model
efficiency. The GOSS and EFB reduce the number of training
samples and feature dimensions, respectively, so that the model
can significantly improve training efficiency while maintaining
accuracy. LightGBM uses the Histogram algorithm [34] to
discretize the floating-point value of the feature into M integers
to find the optimal split node. The histogram algorithm can
reduce memory occupation and computational consumption,
and coarser split nodes also have the effect of regularization.
LightGBM uses a leaf-wise growth decision tree, whose leaf
nodes split from the leaf with the largest split gain. The Leaf-
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wise growth method can quickly improve the fitting ability of
the decision tree, and it is also prone to over-fitting problems.
LightGBM can reduce the decision tree's complexity by
limiting the max depth (‘max depth') and the maximum
number of leaves ('num_leaves') of the tree. In addition, the
over-fitting problem is also dealt with by adjusting the minimal
samples at a leaf node ('min_data_in_leaf') and using L1 and
L2 regularization. Increasing the number of decision trees
('num_iterations') can improve the fitting ability of the model.
Learning rate ('learning_rate') shrinks the contribution of each
tree. ("Bagging_fraction") and ("feature fraction") respectively
represent the random sampling ratio of samples and features in
each iteration.

3) Training mechanism and model configuration
The training and test datasets are composed of the HIRAS
and MERSI collocation data randomly selected from each



month of 2020 (January 15, February 6, March 13, April 30,
May 12, June 5, July 10, August 28, September 16, October 2,
November 5, and December 23) with an 8:2 ratio. The
sampling interval is one scan line and three FOVs to ensure
that the samples come from different atmospheric and ground
conditions. For the reason that the qualities of HIRAS infrared
radiation and MERSI cloud mask products in the polar regions
(60-90° N, 60-90° S) are affected by the reflection of snow on
the ground, the polar samples are excluded from the training
and test datasets.

HIR radiations are significantly affected by cloud cover and
cloud phase, which is the physical basis of HIR data cloud
detection. However, the surface type (sea or land), solar
radiation (day or night), optical path (1/cos (sensor zenith
angle)) and other factors also affect the properties of infrared
radiation. Therefore, HIRAS global HIR data are divided into
four datasets: day-land, day-sea, night-land, and night-sea
(TABLE III), used to build LightGBM cloud detection models
separately. The true labels of the HIRAS FOVs (cloud=0, clear
sky=1) are generated by the HIRAS/MERSI collocation cloud
detection method in section 3.1.

The cloudy samples are approximately 8 (3) times as large
as the clear-sky samples in the ocean (land) dataset. The
imbalance between cloudy and clear-sky samples may make
the LightGBM model learn more cloudy sample features and
reduce the detection performance of clear-sky samples [35,36].
The clear-sky samples are the more concerned category in
cloud detection. The cloud samples in the dataset are randomly
downsampled to alleviate the impact of data imbalance,
controlling the ratio of cloudy and clear-sky samples about 2:1.
Finally, the constructed HIRAS global training dataset and test
dataset are shown in TABLE III. A total of 402,620 samples
are used to train LightGBM model, and 10,0657 samples are
used for validation.

TABLE III. TRAINING AND TEST DATASETS

Model Train dataset Test dataset
cloudy clear-sky cloudy clear-sky

Day land 54149 30351 13538 7588

Day sea 77520 38760 19380 9690

Night land 61943 39033 15486 9758

Night land 67243 33621 16811 8406

In this paper, a sensitivity experiment is used to select
appropriate principal components as the predictor of the model.
Since HIRAS short-wave infrared radiations are affected by the
solar stray light, the PCs of daytime land (sea) models are
calculated by the long-wave and medium-wave infrared
radiations. And the PCs of nighttime land (sea) models are
computed by the long-wave, medium-wave and short-wave
infrared radiations.
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Figure 1. sensitivity experiment of the number of PCs

As the number of PCs increases, the cloud detection
accuracy of LightGBM increases rapidly (Figure 1). It is
because more PCs provide more effective spectral information.
The accuracy drops slightly after reaching the "knee point"
corresponding to the optimal number of PCs. It may be that the
instrument noise gradually affects the adequate spectral
information. Therefore, the leading K PCs of datasets (the day-
land dataset is 13, the day-sea dataset is 11, the night-land
dataset is 7, the night-sea dataset is 17) are respectively used as
the predictors of the corresponding LightGBM model. The
Hyperopt tuner is used to select the optimal hyperparameter
combination of the LightGBM model. Finally, the trained
LightGBM model is shown in TABLE IV.

TABLE IV. THE LIGHTGBM CLOUD DETECTION MODEL

Model num Num Max Learning Min
iterations leaves depth rate data in

leaf

Day 290 280 170 0.12 60

land

Day 270 300 290 0.10 55

sea

Night 270 280 130 0.09 40

land

Night 290 380 260 0.09 40

sea

IV. VALIDATION

A. The accuracy validation of collocation algorithm

The MERSI 25 band (12.0 um) detecting the temperature
of land and water cloud is fully covered by the HIRAS’s long-
wave IR band (8.8-15.38 um), which is used to compare with
HIRAS radiances. The spectral convolution (formula 9) of
HIRAS hyperspectral radiances is performed to match the
MERSTI’s band radiance [23]. In formula 9, the I(v) is HIRAS
hyperspectral radiance at wavenumber v, and the F(v) is the
spectral response function (SRF) of MERSI 25 band. The R is
HIRAS-convolved MERSI band radiance at bandpass limits of
v; and v,.

f;’lz 1(W)F(v)dv

f171J12 F(v)dv

The radiances of MERSI within HIRAS FOV are averaged
and then compared with the HIRAS-convolved MERSI 25



band radiances. The differences between the spectral-
convolved bright temperatures (BTs) of HIRAS and the spatial-
averaged BTs of MERSI can reflect the accuracy of the
collocation algorithm. Because the spatial-averaged MERSI BT
is sensitive to matched MERSI pixels, the smaller the BT
differences, the higher the accuracy of the collocation
algorithm. The clear-sky measurements of HIRAS and MERSI
on the global ocean are used as validation data, selected by
collocation algorithm (the threshold of cloudiness is 10%).
Figure 2 are the BT difference map (a) and the probability
density function (PDF) of differences between the HIRAS-
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Density

convolved and spatial-averaged BTs for the MERSI 25 band.
Although the selected clear FOVs have diverse atmospheric
and ocean surface conditions, the BT differences between
HIRAS and MERSI are mainly among 0-0.5 K. Moreover, the
BT differences conform to the normal distribution with a mean
value of 0.32 K and a standard deviation of 0.32. The spectral-
convolved BTs of HIRAS are warmer than the spatial-averaged
BTs of MERSI as a whole. The presence of a small number of
clouds in some HIRAS clear-sky FOVs may cause a BT
deviation of 0.32K. In general, the HIRAS/MERSI collocation
algorithm has shown high accuracy.
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Figure 2. HIRAS-MERSI BT difference map (a) and its PDF (b) on global ocean clear-sky FOVs on June 5, 2020. The black line represents the fitted normal
distribution curve.

B. validation of LightGBM model

1) validation using MERSI cloud mask product
Four classical metrics [37] are used to evaluate the cloud
detection performance of the LightGBM model, including the
probability of detection (POD), false alarm ratio (FAR),

accuracy (ACC) and Heidke skill score (HSS) [38].

POD = a/(a+c) (10)

FAR = b/(atb) (11)

ACC = (a+d) / (a+b + ct+d) (12)

HSS = 2(ad-bc) / [(at+c)(at+d)+(a+b)(b+d)] (13)

Where a is the number of samples that both the matching
method and LightGBM model are classified as clear-sky, b is
the number of samples identified as cloudy by the matching
method but labelled as clear-sky by the LightGBM model, c is
the number of samples identified as clear-sky by the matching
method but classified as cloudy by the LightGBM model, d is
the number of samples that both the matching method and
LightGBM model are identified as cloudy. The labels
generated by the matching method are regarded as the
reference truth. POD represents the ratio of the number of
clear-sky samples correctly detected by the LightGBM model
to the total number of clear-sky samples. A larger POD denotes
that more clear-sky samples are correctly detected (optimal=1).
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FAR represents the ratio of the number of clear-sky samples
incorrectly detected by the LightGBM model to the number of
all predicted clear-sky samples. FAR represents the false
detection rate of the LightGBM model for clear-sky samples
(optimal = 0). ACC represents the ratio of clear-sky and cloudy
samples correctly identified by the LightGBM model to the
total samples. ACC signifies the overall cloud detection
accuracy of the LightGBM model (optimal = 1). The HSS is a
commonly used robust performance metric that eliminates the
cloud detection accuracy obtained due to random chance
(optimal = 1).

TABLE V. CLOUD DETECTION SCORES OF THE LIGHTGBM MODEL IN THE

TEST DATASET
Model POD FAR ACC HSS
Day land 0.93 0.09 0.92 0.84
Day sea 0.87 0.20 0.88 0.65
Night land 0.92 0.09 0.92 0.83
Night sea 0.87 0.20 0.87 0.65

The HIRAS global datasets are randomly divided into 20%
as the test datasets (TABLE III) to verify the generalization
performance of the trained LightGBM models for unknown
samples. The cloud detection performances of the LightGBM
models in the test datasets are shown in TABLE V. The
LightGBM day and night models have similar cloud detection
performance, with an ACC of 0.9. It may be because the
separate training of the day and night models alleviated the
influence of solar radiation on cloud detection. The ACC of the
LightGBM land model can reach 0.92, and its HSS is 0.84. The
LightGBM sea models have an ACC of 0.89 and an HSS of
0.65. The land models have better cloud detection performance



than the sea models. It may be because the ocean scene has
more partially cloudy FOVs than the land scene (as shown in
fig 2.a and 3.a). However, the partially cloudy FOVs are "hard
cases" in cloud detection classification because their infrared
radiation characteristics are between the completely cloudy
FOVs and the clear-sky FOVs. The partially cloudy FOVs are
easily incorrectly detected as the clear-sky FOVs, resulting in
the FAR of the ocean model (FAR=20%) is much higher than
that of the land model (FAR=9%). In addition, the infrared
radiation of ocean surface and low-level water clouds have a
certain similarity, which also increases the difficulty of cloud
detection. In general, the LightGBM models have high
accuracy and good generalization performance for cloud
detection from HIRAS HIR data.

2) Test case analysis

To further verify the performance of the LightGBM cloud
detection model, one day of HIRAS and MERSI collocation
data (September 18, 2020) were randomly selected as a test
case. The data is outside the training dataset. Figure 3 (Figure 4)
compares cloud detection results of observation data during the
day (night). For HIRAS Llc cloud cover products, when the
cloud cover is less than 10%, the HIRAS FOV is identified as

MERSI L2 cloud mask product

60°N

120°W 60°W

confidently cloudy probably cloudy probably clear  confidently clear

i
120°E

clear-sky (label=1). When the cloud cover is greater than 10%,
the HIRAS FOV is classified as cloudy (label=0). For the
LightGBM cloud detection method, observation data are first
classified into day-land, day-sea, night-land, and night-sea, and
then call the corresponding trained LightGBM models for
cloud detection.

TABLE VI. CLOUD DETECTION SCORES OF LIGHTGBM MODEL AND HIRAS
L1C CLOUD COVER PRODUCTS IN TEST CASES

Model Product POD FAR ACC HSS
Day land | LightGBM 0.93 0.08 0.93 0.85
Day land | HIRAS/LIc 0.64 0.36 0.68 0.28
Day sea LightGBM 0.82 0.24 0.89 0.57
Day sea HIRAS/L1c 0.59 0.43 0.81 0.16
Night LightGBM 0.93 0.08 0.93 0.85
land
Night HIRAS/L1c 0.68 0.30 0.71 0.38
land
Night LightGBM 0.81 0.24 0.88 0.56
sea
Night HIRAS/L1c 0.59 0.43 0.81 0.15
sea

HIRAS L1c cloud cover product
.,“] <8

Cloud Clear

Cloud Clear

Figure 3. The cloud detection comparison of observation data during the day on September 18, 2020. (a) MERSI L2 cloud mask product; (b) HIRAS Llc cloud
cover product; (c) the cloud detection results of HIRAS/MERSI collocation method; (d) the cloud detection results of LightGBM model.

For the daytime observation data of the test cases (Figure 3),
the cloud detection results of the HIRAS/MERSI collocation
algorithm (Figure 3.c) and the MERSI L2 cloud masks (Figure
3.a) have high consistency, showing adequate cloud detection
accuracy. Therefore, the matching cloud detection results are
used as the reference truth. There are some deviations between
the HIRAS Llc cloud cover product (Figure 3.b) and the
MERSI cloud mask, such as western Australia (30°S, 120°E),
the central Pacific (5°N, 140°W) and other regions. The cloud
detection accuracies of HIRAS Llc cloud cover products on
land and sea areas are only 0.68 and 0.81, respectively
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(TABLE VI). It may be due to systematic errors in HIRAS L1c
cloud cover products. As shown in Figure 3.d, many cloudy
and clear-sky FOVs are correctly classified by the LightGBM
model, with an accuracy of 0.93 for land data and an accuracy
of 0.89 for sea data (TABLE VI). The partially cloudy FOVs in
a sizeable clear-sky area, such as the central Pacific Ocean (5°S,
140°W), are easily classified as clear-sky FOVs by the
LightGBM model. It may be that these FOVs have prominent
clear-sky radiation characteristics. Because there are more
partially cloudy FOVs on the ocean, the FAR of sea model
(FAR=0.24) is much larger than the land model (FAR=0.08).



Some clear-sky FOVs in the high-latitude ocean, such as the
South Pacific (40°S, 130°W), are identified as cloudy by the
LightGBM model. It may be due to the low water temperature
of the ocean at high latitudes, and its infrared radiations are
similar to that of water clouds. In addition, the imbalance
between the cloudy and clear-sky FOVs in the ocean (the

120°wW 60°W 0° 60°E 120°E

confidently cloudy probably cloudy  probably clear  confidently clear

Clear

cloudy FOVs: the clear-sky FOVs = 8:1) further increases the
difficulty of cloud detection for the sea HIR data. Therefore,
the cloud detection performances of the LightGBM model on
land (ACC=0.93, HSS=0.86) are better than that of the ocean
(ACC=0.93, HSS=0.57).

HIRAS L1c cloud cover prod
e h 3

i,

©120%

Cloud Clear

Figure 4. Cloud detection comparison of night observation data on September 18, 2020. (a) MERSI L2 cloud mask product; (b) HIRAS Llc cloud cover
product; (c) the cloud detection results of HIRAS/MERSI collocation method; (d) the cloud detection results of LightGBM model.

As shown in Figure 4, the LightGBM model also has
similar conclusions for the night observation data of the test
cases. Compared with HIRAS Llc cloud cover products, the
cloud detection performance of the LightGBM model has been
dramatically improved (the ACC of the land model has
increased by about 22%, and the ACC of the sea model has
increased by about 7%). It is also worthy to note that the cloud
detection scores of the LightGBM model in the test case are
similar to the performance in the test set, showing superior
generalization performance.

C. Time complexity of the algorithm

For HIRAS/MERSI collocation cloud detection algorithm
(Section 2.1), each HIRAS FOVs need to search for the
overlapping MERSI pixels based on the LOS from a space of
about 100*100. The time complexity of the HIRAS/MERSI
collocation algorithm is O(N*M), where N is the number of
HIRAS FOV and M is the number of MERSI pixels to be
matched (about 10000 times of N). Therefore, the time
complexity is simplified to O(N2). The trained LightGBM
model is a known functional relationship. LightGBM consists
of multiple decision trees, and each decision tree includes
multiple branch nodes. The time complexity is related to the
structure of the model (the number of decision trees, etc.).
However, these structural parameters are constants. Therefore,
the time complexity of the LightGBM cloud detection
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algorithm is O(N), where N is the number of HIRAS FOVs.
Thus, the time cost of the HIRAS-MERSI collocation
algorithm increases faster than the LightGBM algorithm with
the number of input samples. LightGBM cloud detection
algorithm has significant computational efficiency.

The HIR data from HIRAS on September 18, 2020, are
used to compare further the actual running time of the two
cloud detection algorithms. The experimental environment is
the same 8GB intel i5 computer. The average time cost, defined
as the average cloud detection time of a HIRAS's L1 file, is
used to measure the cloud detection efficiency of the algorithm.
The experimental results show that the average time cost of the
HIRAS/MERSI collocation algorithm is about 302.77s, and the
average time cost of the LightGBM model is about 0.45s.
Therefore, the cloud detection speed of the LightGBM model is
approximately 670 times that of the HIRAS/MERSI collocation
algorithm, showing a superior cloud detection efficiency.

V. CONCLUSION

Cloud detection is a crucial step in applying HIR data, such
as data assimilation, the profile inversion of temperature and
humidity, etc. The traditional physical cloud detection methods
need to set a series of empirical thresholds. The collocation
imager method and the dual-channel method rely on the fusion
of multi-source data. The clear channel cloud detection method



based on radiative transfer model simulation is affected by the
error of the model background field. Therefore, this paper aims
to build a fast cloud detection algorithm based on machine
learning, which directly identifies the cloud labels through the
infrared radiation characteristics of the HIRAS FOVs.

At present, the cloud detection algorithms based on
machine learning from HIR data are only well applied to the
completely cloudy FOVs and the completely clear-sky FOVs.
To improve the detection effect of the machine learning model
for the partially cloudy FOVs, this paper has made the
following attempts:

e For machine learning algorithms. The LightGBM
algorithm with the best cloud detection performance is
selected from five classic machine learning algorithms.
The LightGBM adopts the boosting integration,
focusing on the misclassified samples in model training,
with strong learning ability and generalization
performance. In addition, the LightGBM also has
apparent training efficiency.

For data processing. The HIRAS global observation
data are divided into day-land, day-sea, night-land, and
night-sea datasets to control the influencing factors of
infrared radiation. The four datasets are used to train
the machine learning models separately. The HIRAS
infrared radiations are transformed into K principal
components by PCA technology, used as predictors.
The PCA has the advantages of reducing redundant
information and sensor noises, accelerating model
convergence and prediction. The cloudy samples in
the datasets are randomly downsampled to improve the
detection performance of the LightGBM model on the
clear-sky FOVs.

The constructed LightGBM model showed satisfactory
cloud detection performance in the randomly selected test
dataset and test cases. The LightGBM model has a higher
accuracy for the large clear-sky and cloudy areas than the
partially cloudy areas. It may be because the partially cloudy
FOV has the radiation properties of both the cloudy and clear-
sky FOVs. The LightGBM model has a similar cloud detection
performance for HIRAS day and night HIR data. The
LightGBM model has an accuracy of 0.93, an HSS of 0.85 for
land HIR data and an accuracy of 0.89, an HSS of 0.65 for sea
HIR data. The LightGBM model has better cloud detection
performance on land than on sea. It may be because the ocean
has more partially cloudy FOVs, and the infrared radiation of
high-latitude oceans and low-level water clouds have a certain
similarity. In addition, the imbalance of ocean data sets further
increases the difficulty of cloud detection. Compared with
HIRAS Llc cloud cover products, the cloud detection accuracy
of the LightGBM model has been improved by about 22% (7%)
for land (ocean) HIR data. The cloud detection speed of the
LightGBM model is about 670 times that of the
HIRAS/MERSI collocation algorithm, showing well cloud
detection efficiency. The improvement of cloud detection
accuracy and efficiency will benefit the operational application
of the LightGBM cloud detection method. Future work also
needs to improve the detection effect of the partially cloudy
FOVs on the ocean. In addition, the influence of the LightGBM
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cloud detection method on the application of HIR data needs to
be further studied.
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