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Abstract
We presented a new local particle filter named the localized weighted ensem-
ble Kalman filter (LWEnKF), which was tested and verified using a simple
high-dimensional Lorenz 96 model. A revised LWEnKF, the proposal weights
calculation of which is modified through localization to prevent filter degener-
acy for real geophysical models, is explored further in this article and shows lots
of potential in the implementation of real complex models. For geophysical mod-
els, the ocean dynamics changes slowly compared with that of the atmosphere.
With a relatively low resolution, it is weakly nonlinear in the surface layers of the
ocean model used in this article, which fits the linear and Gaussian assumptions
of the EnKF but could be a challenge for particle filters in the data assimilation
process. With only 50 particles, the LWEnKF assimilates the sea-surface tem-
perature (SST), sea-surface height (SSH), temperature, and salinity profiles with
affordable computational cost, providing a reasonable forecast. Moreover, the
LWEnKF is compared with the ensemble Kalman filter (EnKF) and the local
particle filter (PF). For observed variables, the LWEnKF performs comparably
to the EnKF, as the observation operator is linear. For unobserved variables, the
LWEnKF provides more accurate forecasts than the EnKF, since the latter con-
siders only the correlations, while the former considers higher-order moments.
The local PF ensemble does not converge to the observed solution in an ample
amount of time in this study, which needs further investigation.
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1 INTRODUCTION

The ensemble Kalman filter (EnKF) and its derived algo-
rithms have been applied widely and successfully in
ocean data assimilation (DA), but its linear and Gaus-
sian assumptions are not consistent with actual com-
plex ocean models. Recently, the particle filter (PF) has
been developed, substantially for application to nonlinear

non-Gaussian systems, and the filter degeneracy problem
has hindered its application to real geophysical systems.
At present, the main techniques for solving filter degener-
acy are as follows (van Leeuwen et al., 2019): (a) sample
particles from a proposal density rather than from the
original transition density (Ades and Van Leeuwen, 2013;
Zhu et al., 2016; Papadakis, 2007), (b) use a deterministic
transformation process to move the prior particles to the
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posterior particles (Reich, 2013), (c) calculate the particle
weights locally (Poterjoy, 2016; Penny and Miyoshi, 2016;
Farchi and Bocquet, 2018), and (d) combine particle fil-
ters with EnKFs or variational methods (Frei and Künsch,
2013; Morzfeld et al., 2018).

In the localization framework inspired by the local
particle filter (LPF) of Poterjoy et al. (2019), Chen et al.
(2020) proposed the localized weighted ensemble Kalman
filter (denoted as LWEnKF19 hereafter). The method first
adopts the EnKF as the proposal density to obtain proposal
particles and calculates proposal weights according to the
prior particles and the observations. Then the local like-
lihood weights are calculated sequentially, and a merging
step is used to update the particles according to the product
of the likelihood weights and the proposal weights. Finally,
optionally, particles are adjusted via a probability mapping
approach.

The posterior particles obtained by the LWEnKF19
approximate the weighted ensemble Kalman filter
(WEnKF: Papadakis et al., 2010; Papadakis, 2007) near
the observations, while retaining information from the
EnKF and the proposal weights far from the observa-
tions. Experiments using the Lorenz 96 model show
that it can combine some advantages of the EnKF and
the LPF in both linear and nonlinear configurations.
Meanwhile, experiments with the two-layer quasi-
geostrophic model show its potential for real applications.
However, the total weights may still be degenerate for
high-dimensional real systems, since the proposal weights
are calculated using the full model-error covariance
matrix. The purpose of this article is to improve the
LWEnKF19 for data assimilation in complex geophysical
systems and then test the revised method in a real ocean
model.

With one or more of the above techniques, some
particle filters have been applied to real geophysical
systems. The equivalent-weights particle filter (EWPF:
Ades and Van Leeuwen, 2013; 2015) adopts a pro-
posal density that depends on all particles at the pre-
vious time and ensures that most particles have the
same weight. Browne and Van Leeuwen (2015) test
the EWPF on a full-scale coupled ocean–atmosphere
general circulation model with observing-system simu-
lation experiments (OSSEs). Subsequent studies show
that the performance of the EWPF is largely dependent
on the nudging term between analysis steps (Browne,
2016).

With the idea of sequential-observation localization
(Farchi and Bocquet, 2018), the LPF (Poterjoy, 2016;
Poterjoy and Anderson, 2016; Poterjoy et al., 2017) is
used to assimilate artificial radar observations for the
Weather Research and Forecasting (WRF) model. After
some advances made to the LPF, Poterjoy et al. (2019)

compare the LPF with the ensemble adjustment Kalman
filter assimilating real observations, which indicates the
advantages of the LPF when nonlinear observation opera-
tors and nonlinear model processes are present. However,
when the situation involves linear observation operators,
linear models, and Gaussian errors, the LPF is at a dis-
advantage compared with the EnKF (Farchi and Bocquet,
2018).

As a hybrid method, the local ensemble Kalman par-
ticle filter (LEnKPF: Robert et al., 2017) combines the
EnKF and the PF as two stages; this has been implemented
in the Consortium for Small-scale Modeling (COSMO)
framework and assimilated real observations. The results
indicate the potential of the LEnKPF for forecasting
non-Gaussian variables.

The localized nonlinear ensemble transform fil-
ter (LNETF: Toedter et al., 2016) is a second-order
exact filter, which has been tested by OSSEs using the
Nucleus for European Modelling of the Ocean (NEMO).
The performance of the LNETF is comparable with
that of the local ensemble transform Kalman filter
(LETKF: Hunt et al., 2015), but requires a longer spinup
period.

The first particle filter implemented in the operational
setup is the local adaptive particle filter (LAPF) proposed
by Potthast et al. (2019). The LAPF is tested for the global
ICOsahedral Nonhydrostatic (ICON) model at Deutscher
Wetterdienst (DWD), and the score is lower than that
of the LETKF. The PfVar is a hybrid algorithm with an
idea similar to EnVar, which is also under investigation at
DWD (van Leeuwen et al., 2019). Details of the above PF
applications are summarized in Table 1.

In this article, the LWEnKF19 is improved via local-
ization of the proposal weights calculation. The revised
method is tested in a weakly nonlinear system to verify
whether the method can still maintain the advantages of
the EnKF and the LPF in real applications. Variation in
the ocean is a slowly changing process relative to that
in the atmosphere. In addition, the observation opera-
tor used in ocean data assimilation is generally bilinear
interpolation, which is a linear operator. Combining these
considerations, ocean data assimilation is more suitable
for testing the performance of assimilation methods in
weakly nonlinear systems, which is difficult for particle fil-
ters, but advantageous for ensemble Kalman filters when
the ensemble size is limited.

In section 2, we localize the proposal weights, extend
the proposal weights to a vector, and present the modi-
fied method. A simple model test is conducted in section 3,
before the application of the improved algorithm to ocean
data assimilation with the Regional Ocean Modeling Sys-
tem (ROMS) in section 4. Discussions and conclusions are
included in section 5.
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T A B L E 1 Configurations of PFs applied to real geophysical models

Algorithm Model Observation N

EWPF HadCM3 SST 32 OSSE

atmosphere component: Ny=27,370

3.75◦×2.5◦×19 levels

ocean component:

1.25◦×1.25◦×20 levels

Nx=2,314,430

LPF WRF Radar radial velocity and reflectivity 100 OSSE

133×133 grid points ×40 levels

LPF WRF Radar radial velocity and reflectivity 36

250×250 grid points ×51 levels Oklahoma mesonet observations

cloud water path retrievals

LETKPF COSMO Radar radial velocity and reflectivity 36

2.2km×2.2km×60 levels radiosonde TEMP, wind, and humidity

wind profiler

SYNOP and ship surface pressure

aircraft temperature and wind

LNETF NEMO SSH 120 OSSE

0.25◦×0.25◦×11 levels Argo temperature

Nx=333,234 Ny=3,273 on average

LAPF ICON TEMP, PILOT, SHIP, SYNOP, BUOY 40

2,949,120 triangles × 90 levels wind profiler, aircraft, AMV, radio occultations

scatterometer, satellite radiances

2 LOCALIZATION OF PROPOSAL
WEIGHTS

In practical applications to high-dimensional models,
calculating proposal weights using the full model-error
covariance matrix in the LWEnKF will inevitably lead to
filter degeneracy. Therefore, the proposal weights need to
be localized. Consider the data assimilation at time step
n. Assume that the dimension of model variables is Nx,
the dimension of observations at time step n is Ny, and
the number of particles is N. Similarly to the likelihood
weights, we generalize the scalar full proposal weights
w∗

i to the vector local proposal weights w∗
i,k and attach

to each model variable xn
i,k a proposal weight w∗

i,k, where
i=1,2,… ,N, k=1,2,… ,Nx. We take w∗

i,k as an example to
illustrate how to calculate local proposal weights.

As shown in Figure 1, similarly to the state-domain
localization mentioned in Farchi and Bocquet (2018), a cir-
cular (or spherical) region with the spatial position of xn

i,k
as the centre and the radius of 2cB is called the local block,
which is denoted by B; the circular (or spherical) region

with the same centre position, but with a radius of 2cD, is
called the local domain, denoted by D. When calculating
the local proposal weight w∗

i,k, it is considered that only the
model variables in the local block B and the observations in
the local domain D have an influence on the local proposal
weight.

The formulae for calculating the original full pro-
posal weights are given in Appendix A of Chen et al.
(2020). Similarly, in this article, the additive model error
and the observation error are assumed to be white
Gaussian. Considering localization, the local proposal
weight is

w∗
i,k =

p(xn
i,B|xn−1

i,B )

q(xn
i,B|xn−1

i,B , yn
D)
. (1)

Then the denominator of the proposal weight is modi-
fied as

q(xn
i,B|xn−1

i,B , yn
D) ∝ exp

[
(xn

i,B − 𝜇n
i,B)

T
𝜮

−1
B,D(x

n
i,B − 𝜇n

i,B)
]
, (2)



4 CHEN et al.

x
k

grid points

observations

block

domain

F I G U R E 1 Schematic diagram of the local block and local
domain. The red dot indicates the model variable xn

i,k corresponding
to the proposal weight w∗

i,k. The blue dots are model variables and
the yellow squares are observations. The part enclosed by the solid
blue line is the local block, and the area enclosed by the yellow solid
line is the local domain

where xn
i,B represents the combined vector of the model

variables xn
i located in the local block B. yn

D represents the
vector formed by the observations yn in the local domain
D. The method to compute 𝜇n

i and Σ can be found in
Chen et al. (2020), and the calculation of 𝜇n

i,B and 𝛴B,D
also follows the same formulae, but the matrices used in
the formulae are reduced to the local block or the local
domain; see Equations A1 and A2.

Similarly, the numerator of the proposal weight
(Equation 1) is

p(xn
i,B|xn−1

i,B )

∝ exp
{
(xn

i,B − [M(xn−1
i )]B)TQ−1

B (xn
i,B − [M(xn−1

i )]B)
}
.

(3)

Here, M is the deterministic forecast model. The meaning
of the subscript B of the vector xn

i and M(xn−1
i ) is the same

as that for the vector xn
i above. Q is the covariance matrix

of the white Gaussian model error and QB is the principle
submatrix of Q in the corresponding rows and columns.

As in Chen et al. (2020), the proposal weights
(Equation 1) are also adjusted by a parameter 0<𝛼<1:

w∗
i,k = (w∗

i,k − 1)𝛼 + 1. (4)

The parameter 𝛼 actually sets a lower limit on proposal
weights. In real applications, if the observation is an out-
lier or the bias of the forecast model is large, it may
cause filter degeneracy, that is, the weights of a very
small number of particles are particularly large, and the
weights of most particles are very small and can be ignored.
Therefore, the 𝛼 adjustment is needed to prevent filter
degeneracy effectively and enhance the robustness of the
algorithm. Generally, the value of 𝛼 is set to be slightly less
than 1.

The LWEnKF19 also adjusts the likelihood weights
with the coefficient 𝛼. Recently, Poterjoy et al. (2019)
proposed an improved inflation method called 𝛽 infla-
tion, which is an observation-error inflation method that
makes the weights reach the target effective size in the
LPF. 𝛽 inflation is also adopted to adjust the likelihood
weights in the improved method. Otherwise, following
Poterjoy et al. (2019), a mixing parameter 0≤𝛾≤1 is intro-
duced to modify the merging coefficients r1,k and r2,k
(see Equations A17 and A18), which updates particles
by combining the resampled current particles and resam-
pled last-step particles in model state space, including
at the location of observations. Choosing 𝛾<1 is helpful
to alleviate filter degeneracy when the number of par-
ticles N is small. Meanwhile, similarly to the LPF, the
revised algorithm uses kernel density distribution map-
ping (KDDM) as the probability mapping step, to compen-
sate for the insufficiency of the merging strategy, which
considered only the first two moments.

To ensure the clarity and completeness of the arti-
cle, the details of the improved LWEnKF are provided in
Appendix A. The derivation of formulae in Step 5 is sim-
ilar to that in Chen et al. (2019). Please see Poterjoy et al.
(2020) for details of the 𝛽 inflation in Step 4 and the KDDM
in Step 6.

3 EXPERIMENTS IN THE
LORENZ 96 MODEL

We compare the improved LWEnKF with the LWEnKF19
in a simple model – the 40-variable Lorenz 96 (L96)
model (Lorenz, 2006). The differential equation for the
model is

dxk

dt
= (xk+1 − xk−2)xk−1 − xk + F, (5)

where k=1,2,… ,40 and x40+k=xk, x−k=x40−k. F is the forc-
ing term, which is set to 8.0 for the truth run and 8.4 for
forecast to introduce model error. The time step is set to
0.05 (6 hr). The truth is generated by the truth run for
10,000 time steps. The observations are simulated from the
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T A B L E 2 Experiment design for the L96 model

Experiment DA method Localization parameter

ExptA LWEnKF19 c

ExptB LWEnKF cD=cB=c

ExptC LWEnKF cD=c, cB=0

ExptD Control run None

truth by adding a random error drawn from N(0,R), in
which the observation-error covariance is R=I. The model
variables at odd positions are observed every 24 hr (i.e., 4
time steps ).

In fact, the parameters cB≥0 and cD≥0 of the improved
LWEnKF can be chosen arbitrarily, so can be tuned in
the experiments to get the best results. In practical appli-
cations, in order not to introduce additional localization
parameters and not to increase computational cost for tun-
ing, the cutoff parameter c of the likelihood weights is
used as the value of cD, that is, cD=c. There are two arti-
ficial ways to determine B. One is to make B=D, that is,
cB = cD=c. Another is to specify that B only contains
xn

i,k, that is, cB=0. Based on the above considerations, four
experiments are conducted in this section. The first exper-
iment uses LWEnKF19, the second and third experiments
use the improved LWEnKF, but the localization parameter
selection schemes are different, and the fourth experiment
is the control experiment; these experiments are sum-
marized in Table 2. The Gaspri–Cohn (GC) function is
adopted as the localization function, for which the cutoff
coefficient c is tuned from 1–20 grid points. The parame-
ter 𝛼 is chosen from range 0.70–1.00 experimentally. The
motivation is to test the localization of proposal weights;
the 𝛽 inflation and 𝛾 mixing parameter are not used in this
section.

Following Chen et al. (2020), we conduct the data
assimilation experiments with three different types of
observation operator: a linear function h(x)=x and two
nonlinear functions h(x)=|x| and h(x) = ln(|x| + 1), in
which the nonlinearity of the latter is stronger than the
former. To consider sensitivity to the number of particles,
the two methods are also tested with ensemble sizes of 10,
20, 40, 80, 160, and 320. All experiments were repeated 10
times to reduce the impact of random initial particles on
results.

The analysis root-mean-square errors (RMSEs) in
Figure 2 are averaged over 2,500 analysis cycles. The aver-
age RMSE of the control run (ExptD) at the corresponding
time steps is 5.1972, which is too high to show in the
figure. Compared with the control run, both methods have
some improvements in the model variables. There is no
filter degeneracy in all experiments. In the case of the
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F I G U R E 2 The average analysis RMSE over the data
assimilation period of ExptA, ExptB, and ExptC as a function of
ensemble size, in which the observation operators are (a) h(x)=x,
(b) h(x)=|x|, and (c) h(x)=ln(|x|+1)

linear observation operator, the three experiments do not
show much difference; in the case of the stronger nonlin-
ear observation operator, the two experiments (ExptB and
ExptC) with the improved LWEnKF are obviously better
than the original LWEnKF19 (ExptA). When the number
of particles is small (N=10,20), the performance of all DA
experiments is not much different; when the ensemble size
is large (N≥40), the two experiments (ExptB and ExptC)
with localized proposal weights are not worse and some-
times even better than the LWEnKF19 (ExptA), especially
in the case of stronger nonlinearity, where the advantage is
obvious. In most cases, the RMSEs of ExptB and ExptC are
similar, and sometimes the results of ExptC are superior to
those of ExptB.

In order to study the effect of the localized proposal
weights on the total weights of particles, the total weights
of the model variable x1 for the first 20 data assimilation
cycles are shown in Figure 3. In this test, the observa-
tion operator is the absolute function and 80 particles
are used. For comparability, the 𝛼 parameters of ExptA,
ExptB, and ExptC are set to 0.99, and the value of the
localization parameter c of the three experiments is also
the same.
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F I G U R E 3 The total weights of particles in the first 20
analysis cycles for (a) ExptA, (b) ExptB, and (c) ExptC when 𝛼=0.99.
The number of particles is 80, and the observation operator is h(x)
= |x|. The size of the grey circles indicates the value of the weights.
The red, green, and blue diamonds represent the truth,
observations, and mean of analysis particles, respectively

It can be seen clearly that the weights calculated by
LWEnKF19 degenerate more severely, which means that
the phenomenon in which a few particles concentrate
most of the weight occurs frequently. The weights obtained
by ExptB are slightly better than those of LWEnKF19, but
at some analysis cycles the weights are still concentrated
in a small number of particles. The weights calculated by
ExptC are reasonable, and there is no occurrence in which
a few particles occupy most of the weight. Moreover, the
truth lies in the range of effective particles obtained by
ExptC in all analysis cycles. This shows that, for ExptC,
𝛼=0.99 is sufficient to overcome the filter degeneracy.
However, for ExptA and ExptB, it is obvious that 𝛼 should
be smaller.

In summary, experiments on the L96 model show that
the average analysis RMSE of ExptC is not worse than that
of the other two DA experiments under the case of three
operators and different ensemble sizes. The weights calcu-
lated by ExptC are more reasonable, which means there is
no need for too much manual adjustment. In addition, the
local block of ExptC is smaller than that of ExptB, so the
computational time of ExptC is also shorter, which is an
important advantage in real applications.

4 APPLICATION TO THE ROMS

In view of the various advantages of the LWEnKF with
cD = c and cB = 0, we test the scheme with the ROMS to
explore its potential for application to ocean data assimi-
lation further. For the sake of simplicity and no ambiguity,
LWEnKF in this section refers to the LWEnKF with cD =
c and cB = 0, unless explicitly stated otherwise.

4.1 Configuration for the ROMS

The ROMS is a free-surface, hydrostatic,
primitive-equation regional ocean model with a
topography-following coordinate (Shchepetkin and
McWilliams, 2005; 2009). It has been widely used in var-
ious research and applications (Mu et al., 2019; Li and
Toumi, 2017). The model region spans from 105–128◦E
and 15–24◦N, which covers the northern South China
Sea (SCS) and northwestern Pacific. The resolution of
the model region is 1/6◦×1/6◦ horizontally and 24 levels
vertically. The bottom bathymetry is obtained from the
NGDC's ETOPO2 (https://ngdc.noaa.gov/mgg/global/
etopo2.html), which is a 2 argmin ×2 argmin resolution
gridded data set. The model is forced by the three-hourly,
0.75◦×0.75◦ resolution reanalysis atmosphere variables
from the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim (Dee et al., 2011), which
contain the surface wind stresses, surface net heat flux,
surface net freshwater flux, and solar shortwave radiation
flux. The daily 1/12◦×1/12◦ HYCOM reanalysis data (Met-
zger et al., 2014) are interpolated to the ROMS model grid
as the initial and lateral boundary conditions.

4.2 Data assimilation methods

The ROMS experiments are conducted on the National
Center for Atmospheric Research (NCAR) data assimi-
lation research testbed (DART: Anderson et al., 2009) to
compare the LWEnKF improved by this article with the
local perturbed EnKF (Anderson, 2003) and LPF (Poterjoy
et al., 2019). Sequential observation localization is required
by all three filters. The cutoff coefficient c (half of the local-
ization radius) is determined by tuning from 0.003–0.03,
which is roughly equivalent to a horizontal localization
radius of 36–366 km. The EnKF uses adaptive prior mul-
tiplicative inflation, as described in Anderson (2007). A
control run, which did not assimilate any observations, is
also presented for comparison.

The LPF adopts 𝛽 inflation, the mixing parameter 𝛾 ,
and the KDDM proposed in Poterjoy et al. (2019). Similarly,
𝛽 inflation, the mixing parameter 𝛾 , and the KDDM are



CHEN et al. 7

used by the LWEnKF, as stated in section 2. Meanwhile,
the parameter 𝛼 is also used for adjusting the proposal
weights in the LWEnKF. The parameters 𝛼 and 𝛾 are both
in [0,1], and they are generally slightly less than 1. To
reduce the cost of tuning parameters, we set 𝛼=𝛾 in the
LWEnKF experiments in this section. The target effective
sample size and the parameter 𝛾 for the LPF and LWEnKF
are chosen experimentally within range 0.70–0.999. Note
that a running product of many small numbers may lead
to underflow errors, so for both the LPF and LWEnKF we
calculate a running sum of the logarithms of the local like-
lihood weights for the calculation of the total weights in
Equation A11 instead.

In addition, the model error variance is required in
the calculation of the proposal weights for the LWEnKF
(see Equations 3 and A1). Several methods to estimate the
model-error covariance have been developed (Zhu et al.,
2018; Todling, 2015a; 2015b). Following Browne and Van
Leeuwen (2015, 2015b), we assume that the variance of a
long model run is related to the variance of the model error.
The model runs for 10 years, from 2007–2016, where the
first year is removed as the spinup period. Then, the model
error variance is approximated by the daily variance in the
model over the nine0-year run.

The data0 sets used in the assimilation are the 1/4◦
gridded daily sea-surface temperature (SST) data from the
Advanced Very High Resolution Radiometer (AVHRR),
the 1/4◦ gridded daily sea-surface height (SSH) data
from Archiving, Validation and Interpretation of Satellite
Oceanographic Data (AVISO) and the quality-controlled
ocean temperature and salinity profiles from the Met
Office Hadley Centre EN4 data set (Good et al., 2013).
The along-track SSH and SST are preferable above the
gridded product, because the observation errors are less
dependent. However, to avoid the introduction of addi-
tional error or bias due to observation quality, the gridded
SSH and SST are considered in assimilation experiments
in this article.

The assimilation window is chosen to be 4 days, which
is slightly shorter than the 5 days used in some literature
(e.g., Kerry et al., 2018; Li and Toumi, 2017). This choice
is based mainly on two considerations: First, the assimila-
tion window is short, to ensure that the model variability
is small; second, the gridded surface observation data are
considered in the experiments, so there is no need to get
enough observations through a long window. Observations
are considered to be available at the middle of the assimila-
tion window. In a window, the assimilated observations are
as follows: gridded SST and SSH observations at the assim-
ilation time, and all the temperature and salinity profiles
within ±2 days of the assimilation time. The total dura-
tion for assimilation cycles is 124 days, from October 1,
2015–February 2, 2016.

The dimension of the model variables is 790,745 and
the average number of observations processed per analysis
step during the assimilation period is 4,803. Considering
the degrees of freedom of the model variables and observa-
tions, as well as the limitation of computational resources,
the number of particles is chosen to be 50.

Following Hoteit et al. (2013), the initial ensemble
is generated by an exact second-order sampling scheme
(Pham, 2001). An empirical orthogonal function (EOF)
analysis is used to find the dominant variability from the
nine-year run model states. Then, the initial particles are
given by the following equation:

xi = x +
√

NLrT
i , (6)

where L is a matrix with columns consisting of N−1 EOFs,
x is the mean of the nine-year model states, ri is the ith row
of a N×(N−1) random matrix, the columns of the matrix
are orthogonal, and the sum of the columns is 0. The initial
ensemble has mean x and covariance L LT, which is the
best approximation of the nine-year model states (Hoteit
et al., 2013).

In order to increase the spread of the prior ensemble
during the assimilation period, the atmospheric forcing
variables of each month are also perturbed in a similar way
to that in Li and Toumi (2017):

fi = f + 0.2
√

NLf rT
i . (7)

Only the surface wind stresses and surface net heat flux
are perturbed, and their error is assumed to be 20%. The
EOFs in the matrix Lf are extracted from the nine-year
ECMWF ERA-Interim data for the corresponding month.

4.3 Results

4.3.1 RMSE and spread

In order to compare the LWEnKF accurately with the
EnKF and the LPF, the RMSE is used to assess forecasts
during the assimilation period in this section. Since we
are concerned about the northern part of the South China
Sea and do not care about the mainland coast, runoff
is not considered in the model. Therefore, in the spatial
average RMSE, the area with a water depth of less than
60 m on the mainland coast is not taken into account.
The four-day forecast that is projected on to observation
space to calculate the RMSE is the mean of 50 prior
particles.

Figure 4 shows the spatial mean RMSE at each anal-
ysis step between the HYCOM reanalysis data or AVHRR
observations and the prior SST obtained by the three
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F I G U R E 4 Spatial averaged
four-day forecast RMSE of SST at
each analysis step for the control run
(blue line), LWEnKF (red line),
EnKF (yellow line), and LPF (purple
line), computed with (a) HYCOM
and (b) AVHRR data. The values in
the left upper corner denote the
time-averaged RMSE of the three
methods, excluding the spinup period
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filters. The corresponding RMSE of the control run with-
out assimilation of any observations is also illustrated.
Compared with the reanalysis data or the observations,
the RMSE of the control run increases with time. At the
beginning of the assimilation cycles, the RMSE of the
three methods is larger than the control. There is a signif-
icant decrease in the subsequent spinup period, and then
the RMSE remains at a relatively stable level. The results
before October 17 are removed as spinup, and are not
included in the time-averaged RMSE shown in the upper
left corner of Figure 4. All three filters have played a role
in improving the forecast. However, the LPF results are
obviously worse than the other two methods. Although the
overall trend of the RMSE time series of the LWEnKF is not
much different from that of the EnKF, it is still an improve-
ment from the perspective of time-averaged RMSE, com-
pared with the EnKF. Compared with the AVHRR gridded
data, the averaged error of the SST is reduced by 68.05%
by the LWEnKF, and 67.04% and 20.35% by the EnKF and
LPF, respectively.

The temporal evolution of the spatial mean RMSE
computed between the SSH forecasts and the HYCOM
or AVISO data is illustrated by Figure 5. Since the mean
of the initial particles is not very different from the
observations or reanalysis data, the spinup period is not

obvious. Compared with the HYCOM or AVISO data, the
time series of the control run and the LPF are very con-
sistent, which shows that the LPF has a limited effect
in improving SSH. The time series of the LWEnKF and
the EnKF are similar, and there are obvious improve-
ments compared with the control. To maintain the con-
sistency of the RMSE, the spinup period is also sub-
tracted from the time-averaged RMSE in the upper right
corner of Figure 5. Compared with the AVISO obser-
vations, the error decreased from 16.15 cm in the con-
trol run to 7.64 cm for the LWEnKF, 7.98 cm for the
EnKF, and 15.85 cm for the LPF on average, with each
experiment reducing error by 52.69%, 50.59%, and 1.86%,
respectively.

In order to compare the three filters more clearly, the
RMSE time series in Figures 4b and 5b are used to draw
a box plot, as shown in Figure 6a,b, respectively. Obvi-
ously, the RMSE of the LPF is significantly different from
the other two methods, since the main body of the box
obtained by the LPF does not overlap with that of the other
two filters. The median of the LWEnKF is slightly smaller
than that of the EnKF. However, the notches in the box
plot of the LWEnKF and the EnKF overlap; there is not
confidence that the true median of the RMSE time series
resulting from the two is different. In addition, the box of
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the LWEnKF is slightly shorter than that of the EnKF, but
it is difficult to calculate the uncertainty in the RMSE, as
only 50 particles are used.

The ratios of the RMSE and spread of SST and SSH are
also illustrated in Figure 7a,b, respectively. The RMSE of
the LPF is too large, resulting in an excessive ratio. Both
the LWEnKF and the EnKF have a certain degree of under-
dispersion, while the LWEnKF is the least underdispersive
of the three filters.

Ocean surface currents from the Global Drifter Project
(GDP) data during period October 17, 2015–February 02,
2016 are also used to provide independent validation. The
averaged RMSEs between the forecast currents of the three
filters and those of drifters are summarized in Table 3.
The performance of the LWEnKF is the best among all
three DA methods. Compared with the control run, the
LWEnKF reduces the error by 29.90% and 20.58% for u and
v, respectively.

To verify the adjustment of the assimilation to the
model variables at the subsurface and deep ocean, the
Argo temperature and salinity profiles of EN4 data set are
employed for validation. Figure 8 shows the average RMSE
of prior temperature and salinity of the LWEnKF, EnKF,
and LPF experiments for the upper 2,000 m. The RMSE
curves of the temperature obtained by the three methods
are very similar (Figure 8a). Although the average salinity

RMSE of the LWEnKF is also the smallest, the difference
in RMSE between the three methods at different depths is
relatively large. On the one hand, the number of salinity
observations is much less than the number of temper-
ature observations (including SST and temperature pro-
files), which leads to limited assimilation performance of
the salinity. On the other hand, the salinity is also affected
by temperature observations, while the three methods are
different in dealing with the relationship between temper-
ature and salinity. These are some of the reasons why the
RMSE curves of salinity obtained by the three filters vary
widely.

4.3.2 Surface states

In order to qualitatively and intuitively investigate the
characteristics of the LWEnKF further, the Ocean Sur-
face Current Analysis Reat-time (OSCAR: Bonjean and
Lagerloef 2002) currents are used for comparison with
the four-day forecast of the assimilation analysis. The
OSCAR product provides 1/3◦×1/3◦ global surface cur-
rents averaged over the top 30 m of the upper ocean using
satellite SSH, wind, and temperature. Despite the lack
of more complex physical processes, OSCAR can provide
direct satellite measurements of surface currents on a fixed
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F I G U R E 6 Box plot of the
RMSE of (a) SST and (b) SSH for the
LWEnKF, EnKF, and LPF, computed
with (a) AVHRR and (b) AVISO data,
respectively

(a) (b)

LPF

0.5

1

1.5

R
M

S
E

 (
° C

)

SST (cmp. with AVHRR)

LWEnKF EnKF LWEnKF EnKF LPF
0.05

0.1

0.15

0.2

R
M

S
E

 (
m

)

SSH (cmp. with AVISO)

F I G U R E 7 Spatial averaged
four-day forecast RMSE/spread of (a)
SST and (b) SSH at each analysis step
for the LWEnKF (red line), EnKF
(blue line), and LPF (yellow line),
computed with the (a) AVHRR and
(b) AVISO data. The values on the
right show the time-averaged
RMSE/spread of the three methods,
excluding the spinup period

(a)

(b)

0.5

1

2

3

4

5

6

7

R
M

S
E

/S
p
re

a
d

SST (cmp. with AVHRR)

LWEnKF : 1.4487
EnKF : 1.8561
LPF : 5.5365

10.17 10.29 11.10 11.22 12.04 12.16 12.28 01.09 01.21 02.02

Date

1

2

3

4

5

6

7

7.5

R
M

S
E

/S
p
re

a
d

SSH (cmp. with AVISO)

LWEnKF : 2.0839
EnKF : 2.5774
LPF : 6.1411

T A B L E 3 Averaged four-day forecast RMSE of
15-m currents compared with drifter data. LWEnKF EnKF LPF Control run

u (cm⋅s−1) 19.9624 20.5015 24.2599 28.4786

v (cm⋅s−1) 19.6250 20.0270 24.3808 24.7090

global grid at fixed time intervals (Dohan and Maximenko,
2010).

Figure 9 shows the spatial pattern of surface currents
and SSH for four selected days, during which an anti-
cyclonic eddy is observed in the OSCAR dataset in the
southwest of Taiwan on November 10, 2015 and propa-
gates southwestward along the continental slope to the

southeast of Hainan. In Figure 9d for the LPF experiment,
the forecasts deviated completely from the OSCAR current
and AVISO SSH in Figure 9a. Compared with Figure 9a,
the SSH forecasts from the LWEnKF and EnKF experi-
ments in Figure 9b capture the spatial pattern, but their
SSHs are lower in the centre of anticyclonic eddies and the
continental coast. In the forecast currents of the LWEnKF,
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it can be clearly seen that an anticyclonic eddy propagates
from the southwest of Taiwan on November 10, 2015 to the
southeast of Hainan on January 9, 2016, while this eddy
is not produced in the forecast currents of the EnKF on
January 9, 2016.

A geometry-based eddy detection algorithm proposed
by Nencioli et al. (2010) is employed to evaluate the
eddy forecast capability of the three filters. The algorithm
detects eddies based exclusively on the geometry of the
velocity vector, which can also indirectly validate whether
the forecast currents are consistent with the geometry of
the velocity of the OSCAR data. The currents and eddies
detected on January 9, 2016 are presented in Figure 10.
In the LWEnKF run in Figure 10b, both anticyclonic
eddies are predicted, but the scale of the eddy in the
southwest of Taiwan is too large; a cyclonic eddy in
the middle is also captured, where a larger eddy com-
bined with a smaller eddy is observed in OSCAR dataset;
additionally, there is a cyclonic eddy in the south of
Hainan, but the eddy provided in OSCAR is in the south-
east of Hainan. The EnKF produces only one anticy-
clonic eddy in the southwest of Taiwan, which is also
too large in scale. The currents obtained by the LPF
are greatly different from those of OSCAR, which is
unreasonable.

Comparison with OSCAR data may not be sufficient
to verify the velocity field, because the OSCAR currents
are mainly geostrophic and there is no error estimate.
No. 61504350 drifter was affected by the anticyclonic eddy
in the southwest of Taiwan, moving southwestward from

December 2015–January 2016. Figure 11 compares the
ocean surface currents predicted by the LWEnKF, EnKF,
and LPF with the No. 61504350 drifter trajectory. The core
of the anticyclonic eddy of the LWEnKF is more eastward
than that of the EnKF on January 5, 2016, so that the drifter
can be captured by the south edge of the eddy core in
LWEnKF and move northwestward. On January 13, 2016,
the drifter is on the south edge of the eddy core of the
LWEnKF, but on the northeast edge of the eddy core of the
EnKF, which indicates that the velocity field is more rea-
sonable in the LWEnKF. The velocity field of the LWEnKF
is closer to the No. 61504350 trajectory than that of the
EnKF, and the LPF fails to reproduce the anticyclonic eddy
at the surface.

The SST departures between the AVHRR gridded data
and the four-day forecasts of the LWEnKF, EnKF, and LPF
are given in Figure 12. The performance of the LPF is
the worst among the three filters. The prior errors of the
LWEnKF have a similar pattern to those of the EnKF, and
are slightly smaller than those of the EnKF in some areas.
Note that on December 20, 2015 there are large errors in
the northwest of Luzon. According to the daily AVHRR
gridded data, the northwestern coast of Luzon began to
cool down during December 17–20, from about 25 ◦C on
December 16 to about 21 ◦C on December 20, and the
SST recovered to about 24 ◦C on December 21 (not shown
here). The prior SST on December 20 is predicted from the
analysis state on December 16, so this cooling process was
not reflected by the model, resulting in large errors in the
northwest of Luzon on December 20, 2015 in Figure 12a,b.
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F I G U R E 9 The SSH (shading) and surface currents (arrows) of (a) AVISO and OSCAR data, (b) LWEnKF, (c) LPF, and (d) EnKF. The
rows represent the date of selection every 20 days to highlight the propagation of the mesoscale eddy

F I G U R E 10 The surface
currents (arrows) of (a) OSCAR data,
(b) LWEnKF, (c) LPF, and (d) EnKF
on January 9, 2016. The red closed
curves represent anticyclonic eddies
and the blue closed curves represent
cyclonic eddies. The asterisks are the
centres of the eddies

4.3.3 Computational costs

The computational time spent by the LWEnKF, EnKF and
LPF in the first analysis step is also tested for 10 times.
The total number of observations assimilated in this step
is 4,821. Since the localization radius affects the computa-
tional time, the cutoff is set to 0.02 for all three filters in this
subsection. The hardware used in the experiments is Intel

Xeon CPUs. There are 16 cores with 64 GB usable memory
per node.

As described in section 2, the LWEnKF first uses the
local perturbed EnKF to assimilate the observations, then
calculates the local proposal weights, and finally computes
the local likelihood weights and performs the merging step
and KDDM step like the LPF. In theory, the complexity of
the LWEnKF is constructed of three parts. One part is the
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F I G U R E 11 The velocity field (arrows) at 15 m for the four-day forecast of (a) LWEnKF, (b) EnKF, and (c) LPF. The rows represent the
date of selection every 4 days. The No. 61504350 drifter trajectory is represented by the red curves, the position of the drifter on January 3,
2016 is represented by the triangle, the position on January 15, 2016 is represented by the circle, and the pentagram denotes the location on
the selected date

complexity of the EnKF, which can be found in Tippett
et al. (2003). One part is the complexity of calculating the
proposal weights as described in Step 2 in section 2. The
last part is the complexity of the LPF, which is studied in
Farchi and Bocquet (2018).

The computational time in Figure 13 shows that, if
parallelism is not used, the LPF takes almost three times
as long as the EnKF, while the LWEnKF spends only
slightly longer than the LPF. The computational time

includes the input and output time. Meanwhile, in the
LWEnKF, the localization initial calculation for finding
close model variables or observations need only be per-
formed once. With more cores used, the computational
times of the LWEnKF and LPF become closer to that of
the EnKF.

Compared with the EnKF, the LPF requires extra mem-
ory Nx×N to store the likelihood weights. In addition to
such requirements, the LWEnKF also needs a memory
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F I G U R E 12 The SST departures between the AVHRR data and the four-day forecasts of (a) LWEnKF, (b) EnKF, and (c) LPF. The rows
represent the date of selection every 20 days

Nx×N to store the proposal weights. Such a cost is respec-
tively about twice or three times that of the EnKF, consid-
ering that the ensemble size is typically of the order of tens
or hundreds.

5 DISCUSSION
AND CONCLUSIONS

Chen et al. (2020) proposed a local particle filter with
the EnKF as proposal density, denoted by LWEnKF19 in
this article. They also compared the LWEnKF19 with the
EnKF and the LPF in simple models, and conclude that
the LWEnKF19 can combine the advantages of the EnKF
and LPF and has good performance in both linear and non-
linear configurations. The motivation of this article is to
improve the proposal weights calculation in LWEnKF19,
and compare the modified LWEnKF with the EnKF and
LPF in mildly nonlinear real systems to check whether the
LWEnKF can still work well in real applications. First, the
original LWEnKF19 is improved via calculating proposal

weights locally, so that the revised LWEnKF can be applied
to real atmosphere or ocean data assimilation without
filter degeneracy. Then, a weakly nonlinear real ocean sys-
tem is used to compare the revised LWEnKF with the
EnKF and LPF.

When local proposal weights are calculated, two local-
ization parameters cB and cD are introduced, which cor-
respond to the localization half-radius for the local block
and local domain, respectively. In order not to increase the
cost of tuning parameters, the localization parameter cD is
selected to be equal to the localization parameter c of the
original algorithm. That is, only those observations within
2c of the model state xk will have an impact on its pro-
posal weight. Two choices for the localization radius for
the local block are tested in the L96 model. One is cB=c,
which takes into account the correlations of model error
locally. Another is cB=0, which only considers the variance
of model error when the proposal weights are calculated.
The LWEnKF19 is compared with the modified algorithm
with the two choices of cB. The RMSE resulting from the
L96 experiments shows that the performance of the three
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is not very different when ensemble size is relatively small.
As the number of particles increases, both schemes of the
revised filter have lower RMSE than the original algorithm
when the observation operators are nonlinear. Consider-
ing that the weights obtained by the LWEnKF with cB =
0 are more reasonable than those for the other two filters,
and the computational time is less than for the scheme
with cB = c, this choice is thought to be more suitable for
real model applications.

Ocean data assimilation experiments with ROMS at
DART show the potential of the LWEnKF for real applica-
tions. Comparisons between the LWEnKF, EnKF, and LPF
are performed in view of RMSE, spread, surface states, and
computational cost.

Spatial or temporal averaged RMSE of the SST, SSH,
and Argo profiles shows that the LWEnKF performs a little
better than the EnKF, though we do not have confidence
in this, since the notches in the box plot of the LWEnKF
and the EnKF overlap. The ratio of RMSE and the spread
of the SST and SSH indicates that the LWEnKF is the least
underdispersive among the three filters. The forecast SST
bias of the LWEnKF and the EnKF is comparable. How-
ever, for the surface current, the forecast of the LWEnKF
is obviously more reasonable than that of the EnKF. For
observed variables, the observation operators are linear in

the experiments, so the EnKF is good enough to estimate
the posterior state, and the LWEnKF provides no mea-
surable advantage; for unobserved variables, the EnKF
approximates them by covariance, while the LWEnKF can
estimate higher-order moments via attaching each particle
with weight to obtain a more accurate posterior.

The LPF ensemble does not converge to the observed
solution in an ample amount of time. There may
be two reasons. One is that the LPF is not as effi-
cient as data assimilation methods with linear/Gaussian
assumptions when dealing with linearity(weak nonlinear-
ity)/Gaussianity, which has been verified by simple model
tests (Chen et al., 2020; Farchi and Bocquet, 2018). Another
possible cause is the inappropriate initial particles. The
LPF does not change the value of particles directly, but
calculates weights for each particle according to the likeli-
hood function, then adjusts the value of particles based on
the weights. If the initial particles deviate greatly from the
truth, these particles are not important when representing
PDFs, and the true likelihood for them should be small.
Nevertheless, what matters is the relative importance of
the particles after normalization, so the particles cannot
describe PDFs accurately. Therefore, we speculate that the
LPF requires a higher quality of initial particles than the
LWEnKF or EnKF, which is under investigation.

Additionally, we also compare the computational cost
of the three filters, which depends largely on the imple-
mentation of the DART. The computational time of the
LWEnKF is much larger than that of the EnKF, but only
a little greater than that of the LPF, which is afford-
able in the ocean data assimilation experiments in this
article. The memory requirements of the LWEnKF and
LPF are about twice and three times those of the EnKF,
respectively.

In conclusion, the LWEnKF has a performance com-
parable to or even better than that of the EnKF in the
mildly nonlinear ocean system, which is consistent with
the results in simple models by Chen et al. (2020). In the
future, we will test the LWEnKF in a stronger nonlinear
real system. Such a system is more advantageous for par-
ticle filters, thus verifying fully whether the LWEnKF can
still combine the advantages of the EnKF and the PF in
real applications.
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APPENDIX A: LWENKF ALGORITHM

This Appendix provides a description of the revised
LWEnKF. Symbols used here are listed in Table A1.

1. Forecast each particle up to the analysis time step n to
get the prior particles xn,f

i = M(xn−1
i ).

2. Use the local perturbed EnKF as the proposal density
to obtain the proposal particles x0

i , i=1,2,… ,N.
3. For each k=1,2,… ,Nx, calculate the proposal weight

w∗
i,k using x0

i for xn
i in Equations 1-3, and 4. The 𝜇n

i,B and
𝛴B,D in Equation 2 are computed as follows:

𝜮B,D =(I − K B,DH B)QB(I − K B,DH B)T

+ K B,DRDK T
B,D, (A1)

𝜇n
i,B =xn,f

i,B + K B,D

[
yD − h(xn,f

i )D

]
, (A2)

where the reduced Kalman gain KB,D is calculated from
the prior ensemble:

K B,D =(PhT)B,D
[
(hPhT)D + RD

]−1
, (A3)

(PhT)B,D = 1
N − 1

×
N∑

i=1

[
xn,f

i,B − xn,f
i,B

]{
[h(xn,f

i )]D − [h(xn,f
i )]D

}T

, (A4)

(hPhT)D = 1
N − 1

N∑
i=1

{
[h(xn,f

i )]D − [h(xn,f
i )]D

}
×
{
[h(xn,f

i )]D − [h(xn,f
i )]D

}T

. (A5)

4. Calculate the inflation coefficients of the observation
error for j=1,2,… ,Ny.
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T A B L E A1 List of symbols

Symbol Description

Nx Dimension of model variables

Ny Dimension of observations

N Number of particles

x Model variables

y Observations

𝜇 Mean of the proposal density

Σ Covariance matrix of the proposal density

K Kalman gain matrix

H Tangent linear observation operator

h(⋅) Observation operator

M(⋅) Forecast model

Q Model-error covariance matrix

R Observation-error covariance matrix

B Local block

D Local domain

cB Half-radius of local block

cD Half-radius of local domain

c Cutoff coefficient for localization function

Neff Target effective sample size

𝛼 Adjustment parameter for proposal weights

𝛽 Parameter for 𝛽 inflation

w∗
i,k Proposal weight for particle i and model variable k

wo,j
i Likelihood weight calculated from p(yj|xj−1

i ) for particle i and observation j

lc
j,k Localization function value for model variable k when assimilating observation j

wj
i,k Total weight for particle i and model variable k when assimilating observation j

w̃j
i Likelihood weight calculated from p(yj|x0

i ) for particle i when assimilating observation j

x0 Proposal particles

𝜔
j
i,k Localized likelihood weights for particle i and model variable k when assimilating observation j

𝜐
j
i,k Localized total weights for particle i and model variable k when assimilating observation j

Ωj
k Normalization factor of localized total weights

xj
i,k Model variable k of particle i when observation j is assimilated

xj
k Weighted mean of model variable k when observation j is assimilated

𝜎
j
k Weighted standard deviation of model variable k when observation j is assimilated

r1,k Merging coefficient of model variable k for the total weight

r2,k Merging coefficient of model variable k for the total weight at previous step

𝛾 Mixing parameter for merging coefficients

Pin(⋅) Input CDF for the KDDM

Pout(⋅) Output CDF for the KDDM

erf(⋅) Error function

xa
i,k Analysis model variable k of particle i
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a. Find 𝛽i so that the likelihood weights meet the target
effective sample size:

𝛽j = argmin𝛽

⎡⎢⎢⎢⎢⎢⎢⎣
Neff −

( N∑
i=1

exp

{
−[yj − h(x0

i )]
2

2𝛽𝜎2
yj

})2

N∑
i=1

exp

{
−[yj − h(x0

i )]
2

𝛽𝜎2
yj

}
⎤⎥⎥⎥⎥⎥⎥⎦
.(A6)

b. Obtain the multivariate inflation coefficients:

𝛽j = 1 +
Ny∑

m=1
(𝛽m − 1)lj,m. (A7)

5. Let the initial total weight for each model variable be
w0

i,k = w∗
i,k. Then, for each j=1,2,… ,Ny, assimilate the

scaler observations yj one by one.
a. Calculate the likelihood weight for i=1,2,… ,N and

normalize it:

wo,j
i =

exp
{

−[yj−h(xj−1
i )]

2𝛽j𝜎
2
yj

}
N∑

i=1
exp

{
−[yj − h(xj−1

i )]
2𝛽j𝜎

2
yj

} . (A8)

b. Calculate the total weight for k∈{k|lj,k>0}:

wj
i,k = wo,j

i ∗ wj−1
i,k . (A9)

c. Update the localized likelihood weight, then derive
the localized total weight with its normalization fac-
tor for k∈{k|lj,k>0} and i∈{1,2,… ,N}:

w̃j
i =

exp
{

−[yj−h(x0
i )]

2𝛽j𝜎
2
yj

}
N∑

i=1
exp

{
−[yj − h(x0

i )]
2𝛽j𝜎

2
yj

} , (A10)

𝜔
j
i,k =

j∏
1

⎧⎪⎨⎪⎩
(Nw̃j

i − 1)lc
j,k + 1

N

⎫⎪⎬⎪⎭ , (A11)

𝜐
j
i,k = 𝜔

j
i,k ∗ w∗

i,k, (A12)

Ωj
k =

N∑
i=1

𝜐
j
i,k. (A13)

d. Merge the particles for each k in {k|lj,k>0} and each i
in {1,2,… ,N}:

xj
i,k =xj

k + r1,k

[
xj−1

k,si
− xj

k

]
+ r2,k

[
xj−1

k,ti
− xj

k

]
, (A14)

xj
k =

N∑
i=1

𝜐
j
i,k

Ωj
k

x0
i,k, (A15)

(𝜎j
k)

2 =
N∑

i=1

𝜐
j
i,k

Ωj
k

[x0
i,k − xj

k]
2, (A16)

r1,k = 𝛾

×

√√√√√√√√
(𝜎j

k)
2

1
N−1

N∑
i=1

{
xj−1

k,si
− xj

k + dk[xj−1
k,ti

− xj
k]
}2

,

(A17)

r2,k =𝛾(dkr1,k − 1) + 1, (A18)

dk =
N(1 − lc

j,k)

Ω̃j
klc

j,k

, (A19)

Ω̃j
k =

N∑
i=1

w̃j
i𝜐

j−1
i,k , (A20)

where si is the resampled indicator for the current
total weight wj

i,k and ti is the resampled indicator for
the total weight at the last step wj−1

i,k .
e. Update the total weight wj

i,k = 1∕N for k∈{k|lj,k>0}
and i∈{1,2,… ,N}.

6. Adjust the model variables by the KDDM for
k=1,2,… ,Nx.

a. Approximate the input and output cumulative distri-
bution functions (CDFs), respectively:

Pin(xk) =
1
2

N∑
i=1

⎡⎢⎢⎣1 + erf(
xk − xNy

i,k√
2𝜎Ny

k

)
⎤⎥⎥⎦ , (A21)

Pout(xk) =
1
2

N∑
i=1

𝜐
Ny

i,k

Ωk

⎡⎢⎢⎣1 + erf(
xk − x0

i,k√
2𝜎0

k

)
⎤⎥⎥⎦ . (A22)

b. Find the adjustment for i=1,2,… ,N using the cubic
spline interpolation, and obtain the analysis parti-
cles:

pi,k = Pin(xNy

i,k ), (A23)

xa
i,k = (Pout)−1(pi,k). (A24)


