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Abstract

In this paper, a data-driven bias correction approach based on deep learning is

proposed, which is appropriate for the Yin–He global spectral model (YHGSM)

re-forecasting. The proposed architecture involves four U-Net-based networks

estimating the proper bias correction models for YHGSM re-forecasting that

consider as correction factors the geopotential, specific humidity, and vertical

velocity on three pressure levels from the YHGSM model. The proposed

models are then evaluated for their bias correction capability on the 3-h cumu-

lative precipitation over the region of China between 15�–54.5� N, and 63�–
122.5� E. The results revealed that U-Net-based models could reduce the root

mean squared error (RMSE) and improve the threat scores (TSs), especially for

heavy precipitation and rainstorms.
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1 | INTRODUCTION

The atmosphere is a dynamic system that exhibits limited
predictability, and thus weather forecasts are inherently
uncertain. Despite the increasing accuracy of weather
forecasts, there is an element of uncertainty in all predic-
tions. The uncertainties in initial conditions and approxi-
mations adopted during model formulation impose bias
and systematic errors of the numerical weather predic-
tion (NWP) model output. Specifically, weather variables
are dependent on local topography and environmental
conditions. To remove systematic errors and improve the
NWP model output accuracy, several methods have been
developed. Bias correction is one of the most important
methods, with statistical post-processing (Hemri
et al., 2014) being the typical one. For example, the
model output statistics (MOS) approach establishes a lin-
ear statistical relationship between model predictions

and actual observations to improve forecasting accuracy
(Wilks, 2009). The work of J. Wang et al. (2015) employs
a Bayesian probability decision bias correction to improve
the accuracy of the rainstorm set probability forecasting
in the Sichuan Basin of China. Carvalho et al. (2011)
developed a Kalman filter to correct the systematic errors
for the monthly mean temperature simulated by the
PRECIS model.

As the availability of big meteorological data is
increasing, exploiting machine learning development
and computing performance improvement, data-driven
approaches were introduced into NWP. As a result, sev-
eral machine learning methods have been introduced for
meteorological research and have achieved considerable
success in weather forecasting (Grover et al., 2015;
Hernandez et al., 2016) and data post-processing (Dupuy
et al., 2020; Rasp & Lerch, 2018). Weyn et al. (2020)
proposed a data-driven global weather forecasting
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framework on a cubed sphere using a deep con-
volutional neural network (CNN). Witt et al. (2020)
provided a multi-modal benchmark dataset (called
RainBench) and a library PyRain for data-driven
extreme precipitation forecasting. Furthermore, P.
Larraondo et al. (2019) evaluated several solutions
such as random forests, VGG-16, SegNet, and other
methods to derive total precipitation and found that
U-Net significantly outperforms the competitor tech-
niques. Dupuy et al. (2020) also found that U-Net per-
forms better than other traditional machine learning
methods such as random forests and logistic quantile
regression. Singh et al. (2021) pointed out that residual
learning-based U-Net can unravel physical relation-
ships to target precipitation.

U-Net is a CNN-based model that can flexibly and
effectively model non-linear functions (Rasp & Lerch,
2018; Ronneberger et al., 2015). U-Net has been success-
fully applied in many different fields, with Ronneberger
et al. (2015) employing a U-Net model for biomedical seg-
mentation. P. Larraondo et al. (2019) proposed a data-
driven approach to parameterize an encoder–decoder
type of CNN for precipitation estimation. Their research
demonstrates that this type of CNN can interpret the spa-
tial information in the geopotential field and infer total
precipitation with a high degree of accuracy. Further-
more, X. Xu et al. (2019) proposed a novel deep convolu-
tion framework entitled ordinal boosting autoencoder
(OBA) that is appropriate for the bias correction during
the numerical precipitation prediction process. Accord-
ingly, P. R. Larraondo et al. (2020) introduced a method-
ology for optimizing neural network models using a
combination of continuous and categorical binary indices
in the context of precipitation forecasting. Moreover,
Dupuy et al. (2020) suggested a U-Net architecture to per-
form cloud cover forecast post-processing, while Trebing
et al. (2021) proposed a U-Net-based model to nowcast
Netherlands' precipitation.

Precipitation is one of the most critical weather con-
ditions affecting people's work and life. Precipitation
forecasting depends on many parameters such as temper-
ature, pressure, humidity, wind direction, and wind
speed. Due to precipitation's complexity and the uncer-
tainty of NWP, the forecast bias cannot be ignored, espe-
cially for heavy precipitation and rainstorms (Shu
et al., 2018; Zhang et al., 2019). To compensate for that, a
recently developed precipitation forecast bias correction
tool was produced by the European Flood Awareness
System (EFAS) to improve river discharge forecasts. Fur-
thermore, the research work of Jurlina et al. (2020) of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) demonstrates that precipitation bias correction
can indeed improve flood forecasting. Besides, Zhang

et al. (2019) used a deep learning strategy utilizing eight
meteorological factors and improved the root mean
square error (RMSE) and the threat scores (TSs) of rain-
fall forecasts.

The Yin–He global spectral model (YHGSM; Peng
et al., 2019, 2020; Wu et al., 2011; Yang et al., 2015; Yin
et al., 2018, 2021) re-forecast dataset is released by the
National University of Defense Technology (NUDT) for
the study of machine learning in meteorological applica-
tion. The ERA5 re-analysis is used to initialize YHGSM
to generate re-forecasts products. YHGSM re-forecasts
dataset has a long-term data archive and a relatively sta-
ble systematic error. Motivated and inspired by the ongo-
ing research in these areas, we propose a 3-h cumulative
precipitation bias correction method based on deep learn-
ing for YHGSM. This paper aims to provide a deep learn-
ing bias correction method for 3-h cumulative
precipitation of YHGSM re-forecasts. The contributions
of our work are summarized as follows:

• Four U-Net-based precipitation bias correction models
are developed for a YHGSM-based re-forecast opera-
tional NWP model. The performance of these models
is then evaluated.

• The categorical binary metrics proposed by P. R.
Larraondo et al. (2020) are introduced to develop the
TSdiff metric, and then we develop a loss function utiliz-
ing the combination of TSdiff and max absolute
error (MAE).

• The experiments indicate that the suggested model
improves the prediction accuracy of the 3-h cumulative
precipitation, especially for heavy precipitation and
rainstorms.

The remainder of this paper is as follows. Section 2
presents the employed dataset, while Section 3 introduces
the U-Net-based models, the evaluation scheme, the loss
function explored, and the experimental set-up. Section 4
presents the experimental results, and finally, Section 5
concludes this work.

2 | DATASET

2.1 | Dataset

This paper utilizes the ERA5 (Hersbach et al., 2020)
dataset, a global climate re-analysis dataset produced
by ECMWF. From the entire dataset, the total precipita-
tion is chosen and converted to 3-h cumulative precipita-
tion representing real precipitation data from January
2015 to May 2020 over China between 15�–54.5� N and
63�–122.5� E. Additionally, the geopotential, specific

2 of 14 HU ET AL.Meteorological Applications
Science and Technology for Weather and Climate



humidity, vertical velocity, and 3-h cumulative precipitation
from YHGSM re-forecasts are employed as correction
factors.

The dimension of the dataset is 80 � 120, where
each pixel corresponds to the 3-h cumulative precipita-
tion, recorded eight times per day from 00:00 to 24:00.
Since we are only interested in land precipitation in this
work, we set the precipitation over the ocean to zero. As
a result, the lowest errors are found when combining
1000, 800, and 400 hPa levels geopotential height to
derive the total precipitation (P. Larraondo et al., 2019).
Hence, we exploit 3-h cumulative precipitation and these
three levels of geopotential, humidity, and vertical veloc-
ity, constructing a 10-field precipitation feature vector as
the input data.

3 | METHODOLOGY

3.1 | U-Net-based models

All models presented in this paper (Figure 1) are built
upon the U-Net architecture proposed by Ronneberger
et al. (2015). U-Net is a U-shaped architecture comprising
an encoder and a decoder. The former applies a double
convolution and a max-pooling operation for feature
extraction, while the decoder comprises the same layers
and is used for up-sampling (Dupuy et al., 2020; Trebing

et al., 2021). U-Net achieves a pixel-to-pixel mapping pro-
cess applied between the input and output image. For a
detailed analysis of the U-Net, the reader is referred to
the study by Ronneberger et al. (2015).

Attention U-Net (Att-UNet) is a U-Net model using
attention modules. Attention is a mechanism that sup-
presses feature responses within an irrelevant back-
ground and directs the network to enhance its attention
to task-related important features (Bello et al., 2019;
Oktay et al., 2018; Schlemper et al., 2018; Trebing
et al., 2021). Several attention mechanisms (Ahmed
et al., 2017; Luong et al., 2015; Oktay et al., 2018; S. Woo
et al., 2018; K. Xu et al., 2015) have been proposed to
achieve appealing performance improvements. In this
paper, we build the attention module utilizing the atten-
tion gates (AG) proposed by Oktay et al. (2018)
(Figure 2a). In attention module, the up-sampled image
and the original image information passing through the
skip connection are convolved and added and then flow
into the activation function, the convolutional layer, and
the sigmoid activation function until attention coeffi-
cients are obtained. Attention coefficient is a spatial field
and has the same dimension as the feature map. The
attention coefficient for each grid point is between 0 and
1. The output of the attention module is the product of
attention coefficients and eigenvalues at the same posi-
tion, that is, an element-wise multiplication between
attention coefficients and feature maps from skip
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FIGURE 1 The architecture of U-Net based model. When the red arrow indicates double convolution, the original U-Net and Att-UNet

are indicated, respectively, according to whether the attention module is used or not. When the red arrow indicates the residual, it indicates

Res-UNet, and if using the attention module then it is RA-UNet. YHGSM, Yin–He global spectral model
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connection. As shown in Figure 3, the attention mecha-
nism can locate the precipitation areas, and the attention
coefficient value of these areas is large, while the atten-
tion coefficient of other areas is close to 0. In other words,
after multiplying attention coefficients and feature maps,
the precipitation area will become more prominent, and
the area without precipitation will be suppressed.

Theoretically, the deeper the network, the better the
performance. However, deep networks suffer from gradi-
ent disappearance in practice, with residuals being a

standard solution to this problem (He et al., 2016a).
Therefore, residual learning has also been proposed to
learn the residual of the identity mapping. The residual
block we use in this work is recurrent residual block
(Alom et al., 2019), the structure is illustrated in
Figure 2b, where the final feature is the identity mapping
added with the convolutional blocks (Alom et al., 2019;
He et al., 2016b; Jin et al., 2020). Alternatively, a residual
U-Net (Res-UNet) is a U-Net model that uses residual
blocks instead of convolution layers.

FIGURE 2 Overview of the attention module (a) and the residual block (b)

FIGURE 3 Two examples of attention coefficients. From left to right (a-d, e-h): YHGSM predicted precipitation map, ERA5

precipitation map, attention coefficients of Att-UNet, attention coefficients of RA-UNet. YHGSM, Yin–He global spectral model
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Residual block can be used with the attention mecha-
nism to enhance performance (He et al., 2016a, 2016b;
F. Wang et al., 2017; Jin et al., 2020); Residual attention
U-Net (RA-UNet) is the model that uses residual blocks
and attention modules at the same time.

3.2 | Model evaluation

In precipitation forecasts, a threshold value α is used to
distinguish precipitation magnitudes and whether it rains

or not. And the commonly used evaluation index, TS, is
defined as follows:

TS¼ Hits
HitsþFalse alarmsþMisses

,

FIGURE 4 The influence of different coefficients, a, on sigmoid function. (a) a = 0.5, (b) a = 1.0, (c) a = 2.0, (d) logical operation

TABLE 1 Different combination of a and b for loss function

a 0.5 0.5 0.5 1.0 1.0 1.0 1.0 2.0 2.0 2.0

b 0.5 1.0 2.0 0.0 0.5 1.0 2.0 0.5 1.0 2.0
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where

Hits¼ observed> αð Þ� predicted> αð Þ,

Misses¼ observed> αð Þ� predicted< αð Þ,

False Alarms¼ observed< αð Þ� predicted> αð Þ:

for which � means element-wise multiplication (P. R.
Larraondo et al., 2020). For logical operations like
observed< αð Þ or observed> αð Þ, it is 1 if the statement is
true, otherwise it is 0. For each grid point, these indi-
cators can take values of 0 and 1 only, thus also known
as categorical binary metrics. These metrics are non-
continuous, non-differentiable, and unsuitable for
optimizing deep learning models. P. R. Larraondo
et al. (2020) proposed an alternative formulation for
these categorical binary indices, which are defined as
follows:

Hitsdiff ¼ observed> αð Þ�sigmoid predicted�αð Þ,

Missesdiff ¼ observed> αð Þ�sigmoid �predicted�αð Þ,

False Alarmsdiff ¼ observed< αð Þ�sigmoid predicted�αð Þ:

where sigmoid xð Þ¼ 1
1þe�a x. P. R. Larraondo et al. (2020)

use sigmoid function to replace one of the logical opera-
tions. Sigmoid is a smooth and differentiable function;
the use of sigmoid function represents a smooth transi-
tion between the Boolean values at the threshold point
(P. R. Larraondo et al., 2020). The value of the new indi-
cators ranges from 0 to 1; they can be used in deep learn-
ing models. So, the alternative formulation of TS can be
calculated as follows:

TSdiff ¼ Hitsdiff
Hitsdiff þFalse Alarmsdiff þMissesdiff

:

The absolute error is also an important indicator to
measure the quality of the precipitation forecast. Since
YHGSM already has better performance for small
magnitude precipitation forecasts but performed
poorly for large magnitude precipitation forecasts, the
MAE was used in the loss function to improve this
deficiency.

The deep learning process needs to reduce the
loss function's value. So the loss function used in this
paper is a combination of MAE and 1 � TSdiff, that
is Loss function¼ b* 1�TSdiffð ÞþMAE, where MAE¼
max j yk�pk j, with y the value of real precipitation, and
p the prediction value.

We use receiver operating characteristics (ROC) and
TS (W. Woo & Wong, 2017; Zhang et al., 2019) to decide
the best combination of loss function coefficients. As for
the evaluation of training, RMSE, false alarm rate (FAR),
probability of detection (POD), and bias score (BIAS)

TABLE 2 Precipitation classification (unit mm)

Precipitation level No precipitation Light precipitation Moderate precipitation Heavy precipitation Rainstorm

3 h rainfall <0.01 0.01–2.9 3.0–9.9 10.0–19.9 ≥20.0

TABLE 3 The best combination of

loss function coefficients for each model
Model U-Net Att-UNet Res-UNet RA-UNet

Coefficients (h) a b a b a b a b

Lead time 0–24 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0

24–48 2.0 1.0 2.0 2.0 2.0 1.0 2.0 2.0

48–72 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

TABLE 4 Number of parameters and RMSE for different bias

correction models

RMSE

Model Parameters 0–24 h 24–48 h 48–72 h

YHGSM – 2.187919 2.282786 2.308275

U-Net 7,862,409 1.641556 1.189868 1.528800

Att-UNet 9,038,173 1.578880 1.188916 1.535990

Res-UNet 24,052,809 1.523591 1.130530 1.460506

RA-UNet 25,209,245 1.506153 1.107084 1.442939

Abbreviations: RMSE, root mean squared error; YHGSM, Yin–He global

spectral model.
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were used. The RMSE instead of MAE was used because
RMSE is more popular for precipitation forecast evalua-
tion and is better for the evaluation of comprehensive
performance. For which

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼0
Truthk�Outputk

� �2r
,

where n is the number of samples, Truth is the value of
the real precipitation and Output is the value of the pre-
diction. For detailed information on these metrics, please
refer to the Supporting Information and W. Woo &
Wong (2017).

3.3 | Experiments

The dataset contains 15,824 samples from January 2015
to May 2020. We split the dataset randomly into a
training set with 11,680 samples, a validation set with
1216 (5 months) samples, and a testing set with 2920
(1 year) samples. YHGSM re-forecasts were used as
input data, and the ERA5 were used as labels to train
our models. We exploit 3-h cumulative precipitation,
1000, 800, and 400 hPa levels of geopotential, humid-
ity, and vertical velocity, constructing a 10-field feature
vector as input data. The output is a 80 � 120 pixels
revised precipitation map with values of precipitation
intensity.

FIGURE 5 Comparison of evaluation scores before and after correction of 0–24 h. (a) TS, (b) FAR, (c) POD, (d) BIAS. BIAS, bias score;

FAR, false alarm rate; POD, probability of detection; TS, threat score
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For the combined loss function, different coefficients
may have different results. The coefficient a mainly
affects the steepness of the sigmoid function. As shown
in Figure 4, the larger the coefficient a, the closer the sig-
moid function is to the step function of the logic opera-
tion. The coefficient b changes the proportion of 1 �
TSdiff and MAE in the loss function. The larger the value
of b, the larger the proportion of 1 � TSdiff in the loss
function. We tested the performance of 10 different coef-
ficient combinations on the proposed four models. Differ-
ent combinations of coefficients a and b are presented in
Table 1. Each model is trained with these 10 combina-
tions of loss functions.

Four models including U-Net, Att-UNet, Res-UNet, and
RA-UNet are evaluated for their performance. All models
are implemented utilizing Keras and TensorFlow and are
trained on a NVidia Quadro RTX 8000 graphics card

(https://www.nvidia.com/en-us/design-visualization/quadro/
rtx-8000/) with 48Gb of VRAM. The activation function of
the network layer is ReLU, and the batch size is 32. All train-
ing processes use the same training set and are evaluated on
the same test set. Each training session lasts 50 epochs, and
the value of α is a constant 0.01.

4 | RESULTS

This section will evaluate the performance of the four U-
Net-based models in terms of YHGSM re-forecast bias
correction and different lead times. First, the precipita-
tion grades are classified into four classes according to
the 3-h cumulative precipitation and distinguish the pre-
cipitation presence or absence by 0.01 mm. The specific
criteria are shown in Table 2.

FIGURE 6 Comparison of evaluation scores before and after correction of 24–48 h. (a) TS, (b) FAR, (c) POD, (d) BIAS. BIAS, bias score;

FAR, false alarm rate; POD, probability of detection; TS, threat score
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To achieve the optimum performance, for each
model, the best loss function combination is chosen
(Table 3), with the corresponding details listed in the
Supporting Information. The optimal combination of loss
function coefficients is selected by TS and AUC values,
which not only requires the possible maximum AUC
value but also requires TS to be more than 6% higher
than YHGSM forecasts. Table 4 presents the number of
parameters and RMSE for various models under several
lead times (0–24, 24–48, and 48–72 h). Our results indi-
cate that the proposed models can improve RMSE. Specif-
ically, among the models evaluated, the RA-UNet has the
smallest RMSE affording an RMSE reduction of 31.2%,
51.5%, and 37.5% for lead times of 0–24, 24–48, and 48–
72 h, respectively. Res-UNet reduces RMSE by 30.4%,
50.5%, and 36.7% for lead times of 0–24, 24–48, and 48–
72 h, respectively. U-Net and Att-UNet also improved

RMSE. Comparing these four models shows that the
residual block greater enhances performance than the
attention module. The use of the attention module filters
the noisy and irrelevant responses through the activa-
tion function of neurons (Oktay et al., 2018; Schlemper
et al., 2018), that is, background regions without pre-
cipitation are downgraded during the backward pass,
and the model parameters are updated mainly based
on spatial regions with precipitation. But when the fea-
ture signals are processed, the ReLU activation func-
tion causes the high-dimensional raw signals to
collapse into a low-dimensional feature set and poten-
tially impose some features to disappear completely.
The residual block increases the feature signal's dimen-
sion, and thus many features of the original data are
retained. It can be seen from Figure 3 that Res-UNet
is better than Att-UNet model in locating the

FIGURE 7 Comparison of evaluation scores before and after correction of 48–72 h. (a) TS, (b) FAR, (c) POD, (d) BIAS. BIAS, bias score;

FAR, false alarm rate; POD, probability of detection; TS, threat score
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precipitation areas, and the residual block can improve
the accuracy of feature extraction. Additionally, intro-
ducing residuals and attention mechanisms increases
the parameter cardinality by more than 100% and 15%,
respectively.

Figures 5–7 visualize the performance of the proposed
bias correction models for different lead times. As can be
seen from Figure 5, U-Net-based models have made sig-
nificant improvements in TS, FAR, and POD, especially
in the case of heavy precipitation and rainstorm.

FIGURE 8 Difference of TS

between four models and YHGSM

for lead time of 0–24 h. From left to

right: The results of U-Net, Att-UNet,

Res-UNet, and RA-UNet,

respectively. From top to bottom:

The results of light precipitation,

moderate precipitation, heavy

precipitation, and rainstorm,

respectively. TS, threat score;

YHGSM, Yin–He global spectral

model

FIGURE 9 Difference of TS

between four models and YHGSM

for lead time of 24–48 h. From left to

right: The results of U-Net, Att-UNet,

Res-UNet, and RA-UNet,

respectively. From top to bottom:

The results of light precipitation,

moderate precipitation, heavy

precipitation, and rainstorm,

respectively. TS, threat score;

YHGSM, Yin–He global spectral

model
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Compared with YHGSM, Res-UNet and RA-UNet gain
an increase of TS by 1.6 times for heavy precipitation.
The TS of YHGSM for rainstorms is only 0.04, while RA-
UNet increases to 0.25 (6.2 times higher). The results of
Figure 5d (BIAS = 1 marked by black dashed line) indi-
cate that the YHGSM deviation increases with the precip-
itation magnitude. There is a noticeable improvement in
BIAS after utilizing RA-UNet except for the moderate
precipitation. Similar conclusions can be made from
Figure 6 and Figure 7 as Figure 5 for the 24–48 and 48–
72 h lead time, respectively. It is important to note that
all models manage a TS metric increase of more than five
times for heavy precipitation and more than nine times
for rainstorms.

Figures 8–10 show the spatial improvement of TS
compared with YHGSM for lead time 0–24, 24–48, and
48–72 h, respectively. The four columns from left to
right represent U-Net, Att-UNet, Res-UNet, and RA-
UNet, respectively. The rows from top to bottom indi-
cate light precipitation, moderate precipitation, heavy
precipitation, and rainstorm. For most areas, our model
has significant effects, except for light precipitation
with a lead time of 0–24 h. The MAE and area-aver-
aged TS were used in the loss function. And YHGSM
has a small MAE in forecasting light precipitation for
0–24 h lead time, so there may be an increase in the
average TS, but a decrease in TS in some areas. For
moderate to heavy precipitation, all four models show

better correction capability on lead time 24–48 h than
the other two lead times. Furthermore, it can be found
that RA-UNet has a better generalization ability than
the other three models, and the use of an attention
module on the residual block can further improve the
performance.

Figure 11 provides some examples from the test data,
where we sequentially represent the original ERA5 total
precipitation field, the YHGSM output, and the output of
the four different U-Net-based models. For most cases,
and especially for precipitation with a strong correlation
between regions like heavy precipitation and rainstorms,
the predicted precipitation maps after correction are
more closely related to the ERA5 than the YGHSM. For
these precipitation cases, the U-Net-based models
enhance the distribution and precipitation intensity accu-
racy with a significant reduction in FAR and an increase
in POD. However, for the small magnitude of precipita-
tion and scattered precipitation, the effect of the calcu-
lated bias correction is insufficient, as convolution,
pooling, and up-sampling impose small-scale detail loss
while extracting the main features. Additionally, from
our results, we conclude that U-Net-based networks con-
sider the surrounding area and make the prediction
smooth. Another reason for blurry scattered precipitation
is that by using a deterministic loss function, the model
aims to keep the error low with a value that is closest to
all possible outcomes of the prediction sequence so that

FIGURE 10 Difference of TS

between four models and YHGSM

for lead time of 48–72 h. From left to

right: The results of U-Net, Att-UNet,

Res-UNet, and RA-UNet,

respectively. From top to bottom:

The results of light precipitation,

moderate precipitation, heavy

precipitation, and rainstorm,

respectively. TS, threat score;

YHGSM, Yin–He global spectral

model

HU ET AL. 11 of 14Meteorological Applications
Science and Technology for Weather and Climate



the pixel-level frame prediction is reduced (Babaeizadeh
et al., 2017; Denton & Fergus, 2018; Trebing et al., 2021).

5 | CONCLUSION

In this paper, four U-Net-based models are applied to cor-
rect the 3-h cumulative precipitation of the YHGSM re-
forecasts and evaluated for their performance. Employing
a strategy that utilizes a loss function with the best
weight combination of TSdiff and MAE, we demonstrate
that the TS has been improved with the reduction of FAR
and the increase of POD, especially for heavy precipita-
tion and rainstorms. What is more, RA-UNet has a better
generalization ability than the other three models, and it
can reduce the RMSE of the 3-h cumulative precipitation

by 31.2%, 51.5%, and 37.5% for lead times of 0–24, 24–48,
and 48–72 h, respectively.

From our trials, we also conclude that the U-Net-
based networks may lose some small-scale details while
extracting the main image features. On the other hand,
residual blocks improve the feature disappearance prob-
lem. Accordingly, an attention module imposes the net-
work to pay more attention to areas with precipitation,
which increases the accuracy of a certain magnitude but
may negatively affect the remaining precipitation magni-
tude weights.

For future work, we will investigate how to use actual
observational data instead of the re-analysis data ERA5,
train models for different precipitation magnitudes, and
optimal combination of loss function coefficients for bet-
ter performance.

FIGURE 11 Examples of

precipitation forecasts by different

models
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