
Ocean Modelling 164 (2021) 101833

O
p
P
a

b

c

A

K
I
4
P
O

1

t
i
a
h
h
t
m
m
a
w
t
a
(
r
d

w

h
R
A
1

Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier.com/locate/ocemod

cean satellite data assimilation using the implicit equal-weights variational
article smoother
inqiang Wang a, Mengbin Zhu b,1, Yan Chen a, Weimin Zhang a,c,∗, Yi Yu a

College of Meteorology and Oceanology, National University of Defense Technology, Deya Road, 109, Changsha, 410073, China
Beijing Institute of Applied Meteorology, Beijing 100029, China
Key Laboratory of Software Engineering for Complex Systems, Changsha 410073, China

R T I C L E I N F O

eywords:
mplicit equal-weights
D-var
article smoother
cean data assimilation

A B S T R A C T

The implicit equal-weights variational particle smoother (IEWVPS) is a combination of the particle filter (PF)
and weak-constraint 4-dimensional variational (4D-Var) method, that inherits the merits of both. The IEWVPS
avoids the filter degeneracy of particle filters through an implicit equal-weights scheme and reduces the root
mean square deviations (RMSDs) by introducing the 4D-Var method. This method has been tested using the
Lorenz 96 model in a previous study, and we now implement it in the Regional Ocean Model System (ROMS),
which is a realistic and complex ocean model. Two key problems, the representation of the analysis error
covariance and the choice of the parameter 𝛼, were solved during this implementation. With an eddy-permitting
model, satellite-based sea surface height (SSH) and sea surface temperature (SST) observations were assimilated
with a set of 40 particles IEWVPS scheme. Compared with the ensemble 4D-Var method, the IEWVPS can
reduce the bias introduced by perturbed atmospheric forcing, effectively improving temperature simulations
in the upper 50 m while maintaining the RMSD of SSH at the same level. Therefore, the cooling effect caused
by typhoons in the upper ocean is better characterized under the IEWVPS scheme than with previously used
method. The ratio of RMSD to the ensemble spread indicates that the ensemble quality of the IEWVPS is much
better than that of the ensemble 4D-Var. In addition, the computational cost of the IEWVPS is only slightly
larger than that of the ensemble 4D-Var. One additional tangent linear model integration, one additional
nonlinear model integration, and perturbation fields inputs/outputs are still needed.
. Introduction

The particle filter (PF) is a nonlinear data assimilation method
hat approximates posterior probability density functions (PDFs) us-
ng a set of weighted particles. The main problem associated with
pplying the PF to a real geophysical system is filter degeneracy in
igh-dimensional situations. Filter degeneracy means that one particle
as a weight close to 1, while the weights of the other particles tend
oward zero. van Leeuwen et al. (2019) reviewed four categories of
ethods to prevent filter degeneracy, including the proposal density
ethod, localization, transformation and hybridization. Although there

re still many technical obstacles to make PFs operational in numerical
eather prediction centers, many researchers and scientists have made

heir own efforts to implement PFs into real geophysical models. Ades
nd van Leeuwen (2015) tested the equivalent-weights particle filter
EWPF) (van Leeuwen, 2010; Ades and van Leeuwen, 2013) using a
educed-gravity system and found that the EWPF would not disrupt
ynamical balances. Browne and van Leeuwen (2015) further tested the
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EWPF using a coupled HadCM3 model with synthetic observations, and
filter degeneracy was not observed, but the performance of the scheme
was dependent on a nudging term (Browne, 2016). The localized par-
ticle filter (LPF) proposed by Poterjoy (2016) outperformed the EnKF
method in the atmospheric Weather Research and Forecasting (WRF)
model with a series of nonlinear observation operators (Poterjoy and
Anderson, 2016; Poterjoy et al., 2019). In contrast from the LPF used
by Poterjoy (2016), the local particle filter introduced by Penny and
Miyoshi (2016) was based on state–domain localization, a method that
is quite similar to the LETKF (local ensemble transform Kalman filter).
When implemented in the COSMO model, the PF and LETKF hybrid
method improved the forecasting of non-Gaussian variables (Robert
et al., 2018). The localized adaptive particle filter (LAPF) was the
first particle filter to be implemented in the global operational sys-
tem at Deutscher Wetterdienst (DWD) (Potthast et al., 2019), and its
performance was comparable with that of the LETKF method. Under
the framework of a LPF, Chen et al. (2020b) proposed a localized
ttps://doi.org/10.1016/j.ocemod.2021.101833
eceived 16 December 2020; Received in revised form 31 May 2021; Accepted 2 J
vailable online 8 June 2021
463-5003/© 2021 Published by Elsevier Ltd.
une 2021

https://doi.org/10.1016/j.ocemod.2021.101833
http://www.elsevier.com/locate/ocemod
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2021.101833&domain=pdf
mailto:wangpinqiang16@nudt.edu.cn
mailto:zhumengbin@nudt.edu.cn
mailto:chenyan16@nudt.edu.cn
mailto:weiminzhang@nudt.edu.cn
mailto:yuyi2019@nudt.edu.cn
https://doi.org/10.1016/j.ocemod.2021.101833


P. Wang, M. Zhu, Y. Chen et al. Ocean Modelling 164 (2021) 101833

w

𝑝

l

𝐽

i
r
𝐱
n
b

𝑝

a

weighted ensemble Kalman filter (LWEnKF), and applied it to a real
ocean data assimilation scheme in the Regional Ocean Modeling System
(ROMS). Comparisons have been made among the LWEnKF, EnKF and
LPF, indicating that the LWEnKF is the most accurate method for
unobserved ocean state variables, while the accuracies of observed
variables are maintained at the same levels as those resulting from the
EnKF method (Chen et al., 2020a).

The 4-dimensional variational (4D-Var) method has been widely
used in numerical weather predictions due to the benefits of its dy-
namical constraints and that it allows for additional terms in the
cost function, e.g., variational bias correction, variational quality con-
trol, digital filter initialization, weak constraint term, etc. (Bonavita
et al., 2017). Since the minimization process required by the im-
plicit particle filter method is similar to that used in the variational
method, Atkins et al. (2013) explored the inner equivalent connec-
tion between the implicit particle filter (Chorin and Tu, 2009) and
4D-Var methods. Morzfeld et al. (2018) introduced a variational par-
ticle smoother method that eliminated the impact of filter degeneracy
through localization. Wang et al. (2020) illustrated a scheme called
the implicit equal-weights variational particle smoother (IEWVPS) that
avoided filter degeneracy through the implicit equal-weights scheme
proposed by Zhu et al. (2016) and combined with this scheme the weak-
constraint 4D-Var method. The Lorenz96 experimental results showed
that this new scheme outperformed a simple ensemble 4D-Var scheme
in the ensemble quality and reduced the root mean square error of
the ensemble members when compared with outputs of the implicit
equal-weights particle filter (IEWPF) and LETKF methods.

Considering the success of the IEWVPS in the Lorenz96 model,
we further implemented the IEWVPS scheme in the weak-constraint
4D-Var framework of ROMS and conducted real ocean satellite data
assimilation experiments. Compared with the simple Lorenz96 model,
ROMS has more complicated dynamic and thermodynamic constraints
and much larger model dimensions. The major challenge of the imple-
mentation of the IEWVPS method in a real geophysical system is the
representation of the analysis error covariance matrix of the proposal
density, which is part of the calculation of the equal-weights adjustment
component. Furthermore, dimensions of the analysis error matrix are
dependent not only on model dimensions but also on the length of the
time window. It is impossible to calculate the analysis error matrix
explicitly in a high dimensional system. In this study, we introduce
a random method to solve the problem of calculating the analysis
error covariance matrix of this new scheme. The response of the upper
ocean to a typhoon is used as the test object, and satellite-based sea
surface height (SSH) and sea surface temperature (SST) observations
are assimilated in the experiments.

This paper is organized as follows. In Section 2, we describe the
core algorithm and the implementation of the IEWVPS in the ROMS
weak-constraint 4D-Var framework in detail, as well as the random
method of deriving the analysis error covariance matrix. Section 3
introduces detailed experimental information. Section 4 illustrates the
performance when assimilating the SSH and SST observations. The
conclusions and discussions are included in Section 5.

2. Implementation of implicit equal-weights variational particle
smoother in ROMS

The IEWVPS is an extension of the IEWPF (Zhu et al., 2016), which
is based on the ideas of proposal density, implicit sampling (Chorin and
Tu, 2009) and equal-weights (van Leeuwen, 2010). Weak-constraint
4D-Var is chosen as a proposal density. The implicit part of the scheme
follows from drawing samples implicitly from a standard Gaussian
distributed proposal density instead of the original one. The equal-
weights property is achieved by setting the weight of each particle to
a target weight. Combining these ideas, the position of each particle
can be expressed as the mode of the chosen proposal density plus
a scaled random perturbation (denoted as the equal-weights adjust-
ment component in this study). The core algorithm of the IEWVPS
 c

2

is introduced in Section 2.1. However, the equal-weights adjustment
component requires the square root of the covariance matrix of the
chosen proposal density, and this matrix is impossible to calculate
explicitly due to the high dimension of the system. Thus, we have to
approximate the equal-weights adjustment component, and a random
method is used for this purpose, which is described in Section 2.2.
To obtain the position of each particle, the equal-weights adjustment
component operates on each model time step though a nonlinear model
operator.

2.1. The core algorithm of the IEWVPS

According to Bayes’ theorem, the posterior PDF of model state
𝐱0∶𝑛, given the observations 𝐲1∶𝑛 during the time window [0, 𝑛], can be

ritten as follows:

(𝐱0∶𝑛|𝐲1∶𝑛) = 𝑝(𝐱0∶𝑛)𝑝(𝐲1∶𝑛|𝐱0∶𝑛)
𝑝(𝐲1∶𝑛)

(1)

where 𝐱0∶𝑛 = (𝐱0,… , 𝐱𝑛)𝑇 and 𝐲0∶𝑛 = (𝐲0,… , 𝐲𝑛)𝑇 .
Applying the idea of proposal density, we multiply and divide the

right-hand side in Eq. (1) by the same factor 𝑞(𝐱0∶𝑛|𝐲1∶𝑛), which is the
so-called proposal density, leading to the following equation.

𝑝(𝐱0∶𝑛𝐲1∶𝑛) = 𝑝(𝐱0∶𝑛)𝑝(𝐲1∶𝑛|𝐱0∶𝑛)
𝑝(𝐲1∶𝑛)𝑞(𝐱0∶𝑛|𝐲1∶𝑛)

𝑞(𝐱0∶𝑛|𝐲1∶𝑛) (2)

Drawing samples from the proposal transition density 𝑞(𝐱0∶𝑛|𝐲1∶𝑛)
eads the posterior PDF to be expressed as:

𝑝(𝐱0∶𝑛|𝐲1∶𝑛) = 1
𝑁𝑒

𝑁𝑒
∑

𝑖=1

𝑝(𝐲1∶𝑛|𝐱0∶𝑛𝑖 )𝑝(𝐱0∶𝑛𝑖 )

𝑝(𝐲1∶𝑛)𝑞(𝐱0∶𝑛𝑖 |𝐲1∶𝑛)
𝛿(𝐱0∶𝑛 − 𝐱0∶𝑛𝑖 )

= 1
𝑁𝑒

𝑁𝑒
∑

𝑖=1
𝑤𝑖𝛿(𝐱0∶𝑛 − 𝐱0∶𝑛𝑖 )

(3)

where 𝑁𝑒 is the number of particles and 𝑤𝑖 is the weight of particle 𝑖.
The term 𝑤𝑖 can be calculated using the equation below.

𝑤𝑖 =
𝑝(𝐲1∶𝑛|𝐱0∶𝑛𝑖 )

𝑝(𝐲1∶𝑛)
𝑝(𝐱0∶𝑛𝑖 )

𝑞(𝐱0∶𝑛𝑖 |𝐲1∶𝑛)
(4)

Here, the assumptions are as follows: (1) the errors between 𝐱0 and
the initial condition of the background 𝐱𝑏 are Gaussian-distributed with
covariance 𝐁; (2)the observation errors have a Gaussian distribution
with covariance 𝐑, and the observations are temporally independent;
and (3) the model errors are Gaussian-distributed with covariance 𝐐.
Under these assumptions, the numerator of the weight of each particle
can be expressed in terms of the cost function of the weak-constraint
4D-Var:

𝑝(𝐲1∶𝑛|𝐱0∶𝑛𝑖 )𝑝(𝐱0∶𝑛𝑖 ) ∝ exp[−𝐽𝑖(𝐱0∶𝑛𝑖 )] (5)

where 𝐽𝑖(𝐱0∶𝑛𝑖 ) is the cost function of the weak-constraint 4D-Var for
particle 𝑖. The term 𝐽𝑖(𝐱0∶𝑛𝑖 ) is expressed as follows:

𝑖(𝐱0∶𝑛𝑖 ) = 1
2
‖

‖

‖

𝐱0𝑖 − 𝐱𝑏𝑖
‖

‖

‖

2

𝐁−1 +
1
2

𝑛
∑

𝑘=1

‖

‖

‖

𝐲𝑘 −𝑘(𝐱𝑘𝑖 )
‖

‖

‖

2

𝐑−1
𝑘

+ 1
2

𝑛
∑

𝑘=1

‖

‖

‖

𝐱𝑘𝑖 −𝑘(𝐱𝑘−1𝑖 )‖‖
‖

2

𝐐−1
𝑘

(6)

n which  and  are the nonlinear observation and model operator,
espectively. The notation of ‖‖

‖

𝐱0𝑖 − 𝐱𝑏𝑖
‖

‖

‖

2

𝐁−1 represents (𝐱0𝑖 − 𝐱𝑏𝑖 )
𝑇𝐁−1(𝐱0𝑖 −

𝑏
𝑖 ), and the same notation is used for the other terms in Eq. (6). The
umerator of the weight for each particle, calculated with Eq. (4), can
e further simplified as follows:

(𝐲1∶𝑛|𝐱0∶𝑛𝑖 )𝑝(𝐱0∶𝑛𝑖 ) = 𝑁(𝐱𝑎,0∶𝑛𝑖 ,𝐏𝑖) exp(−
1
2
𝜙𝑖) (7)

where 𝑁(𝐱𝑎,0∶𝑛,𝐏) = 𝐶 exp[− 1
2 (𝐱

0∶𝑛 − 𝐱𝑎,0∶𝑛)𝑇𝐏−1(𝑥0∶𝑛 − 𝐱𝑎,0∶𝑛)], 𝐶 is
constant, 𝐱𝑎,0∶𝑛𝑖 = argmin 𝐽𝑖(𝐱0∶𝑛𝑖 ) is the minimizer of the weak-

onstraint 4D-Var cost function, 1𝜙 = min 𝐽 (𝐱0∶𝑛) is the minimum
2 𝑖 𝑖 𝑖
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value of the cost function, 𝐏𝑖 is the inverse of the Hessian of the cost
unction 𝐽𝑖(𝐱0∶𝑛𝑖 ), and the superscript ‘‘a’’ in 𝐱𝑎,0∶𝑛 means ‘‘analysis’’.

The proposal transition density is now chosen to be Gaussian with a
ean 𝐱𝑎,0∶𝑛𝑖 and covariance 𝐏𝑖 for each particle, such that the following

xpression can be constructed.

(𝐱0∶𝑛𝑖 |𝐲1∶𝑛) = 𝑁(𝐱𝑎,0∶𝑛𝑖 ,𝐏𝑖) (8)

The implicit part of the scheme involves implicitly drawing samples
rom a standard Gaussian proposal density, 𝑞(𝜉0∶𝑛) = 𝑁(0, 𝐈), instead of
rom the original proposal density. These two proposal densities are
elated by the following expression:

(𝐱0∶𝑛|𝐲1∶𝑛) = 𝑞(𝝃0∶𝑛)
‖

‖

‖

‖

𝑑𝐱0∶𝑛
𝑑𝝃0∶𝑛

‖

‖

‖

‖

(9)

where
‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

denotes the absolute value of the determinant of the

Jacobian matrix of the transformation 𝐱0∶𝑛 = 𝑔(𝝃0∶𝑛). In the IEWVPS,
the transformation is defined as follows:

𝐱𝑒,0∶𝑛𝑖 = 𝑔(𝝃0∶𝑛)

= 𝐱𝑎,0∶𝑛𝑖 + 𝛼1∕2𝑖 𝐏1∕2
𝑖 𝝃0∶𝑛𝑖 (10)

where 𝛼𝑖 is a scalar that is to be determined for each particle, and the
superscript ‘‘e’’ in 𝐱𝑒,0∶𝑛 means ‘‘equal-weights’’.

According to Eq. (9), the weight of each particle in Eq. (4) is now
given by the following formula.

𝑤𝑖 =
𝑝(𝐲1∶𝑛|𝐱0∶𝑛𝑖 )𝑝(𝐱0∶𝑛𝑖 )

𝑝(𝐲1∶𝑛)𝑞(𝝃0∶𝑛𝑖 )

‖

‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

‖

(11)

Neglecting 𝑝(𝐲1∶𝑛) and taking the −2 log of both sides gives the
following expression.

− 2 log𝑤𝑖 = −2 log 𝑝(𝐲1∶𝑛|𝐱0∶𝑛𝑖 )𝑝(𝐱0∶𝑛𝑖 ) + 2 log 𝑞(𝝃0∶𝑛𝑖 ) − 2 log
(

‖

‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

‖

)

(12)

Using Sylvester’s determinant lemma and the random map of
Eq. (10),

‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

can be reduced to the following term.

‖

‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

‖

= 𝛼𝑁𝑧∕2
𝑖

‖

‖

‖

𝐏1∕2
𝑖

‖

‖

‖

|

|

|

|

1 +
𝝃0∶𝑛𝑖

𝛼1∕2𝑖

𝜕𝛼1∕2𝑖

𝜕𝝃0∶𝑛𝑖

|

|

|

|

(13)

where 𝑁𝑧 is the dimension of 𝐱0∶𝑛 and is depending on the model
dimension and the length of the time window.

Using Eq. (7), the −2 log𝑤𝑖 becomes the following expression.

− 2 log𝑤𝑖 = (𝐱0∶𝑛𝑖 − 𝐱𝑎,0∶𝑛𝑖 )𝑇𝐏−1
𝑖 (𝐱0∶𝑛𝑖 − 𝐱𝑎,0∶𝑛𝑖 ) + 𝜙𝑖

− (𝝃0∶𝑛𝑖 )𝑇 𝝃0∶𝑛𝑖 − 2 log
(

‖

‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

‖

)

= (𝛼𝑖 − 1)(𝝃0∶𝑛𝑖 )𝑇 𝝃0∶𝑛𝑖 + 𝜙𝑖 − 2 log
(

‖

‖

‖

‖

‖

𝑑𝐱0∶𝑛

𝑑𝝃0∶𝑛
‖

‖

‖

‖

‖

)

= (𝛼𝑖 − 1)(𝝃0∶𝑛𝑖 )𝑇 𝝃0∶𝑛𝑖 + 𝜙𝑖 − 2 log 𝛼𝑁𝑧∕2
𝑖

− 2 log
(

|

|

|

|

1 +
𝝃0∶𝑛𝑖

𝛼1∕2𝑖

𝜕𝛼1∕2𝑖

𝜕𝝃0∶𝑛𝑖

|

|

|

|

)

− 2 log
(

‖

‖

‖

𝐏1∕2
𝑖

‖

‖

‖

)

(14)

To satisfy the equal-weights property, the weight of each particle is
set to a target weight 𝑤𝑖(𝛼𝑖) = 𝑤𝑡𝑎𝑟𝑔𝑒𝑡. For this purpose, the 𝛼𝑖 of each
particle must satisfy the following equation.

(𝛼𝑖 − 1)(𝝃0∶𝑛𝑖 )𝑇 𝝃0∶𝑛𝑖 − 2 log 𝛼𝑁𝑧∕2
𝑖 − 2 log

(

|

|

|

|

1 +
𝝃0∶𝑛𝑖

𝛼1∕2𝑖

𝜕𝛼1∕2𝑖

𝜕𝝃0∶𝑛𝑖

|

|

|

|

)

= 𝑐𝑖 (15)

where 𝑐𝑖 = 𝐶 − 𝜙𝑖, 𝐶 is a constant and 1
2𝜙𝑖 is the minimum of the

weak-constraint 4D-Var cost function. If we write 𝝃0∶𝑛 in a simplified
𝑖 m

3

form as 𝝃𝑖, Eq. (15) has the same form as that used in Zhu et al. (2016)
and Skauvold et al. (2019):

(𝛼𝑖 − 1)𝝃𝑇𝑖 𝝃𝑖 − 2 log 𝛼𝑁𝑧∕2
𝑖 − 2 log

(

|

|

|

|

1 +
𝝃𝑖
𝛼1∕2𝑖

𝜕𝛼1∕2𝑖
𝜕𝝃𝑖

|

|

|

|

)

= 𝑐𝑖 (16)

The detailed solution of 𝛼𝑖 can be found in Zhu et al. (2016)
or Skauvold et al. (2019). Eq. (16) has analytical solutions in terms
of the Lambert W function, but it is solved using the Newton iterative
method for practical reasons.

If 𝑐𝑖 = 0, then the value of 𝛼 becomes a single constant solution with
a value of 1. When 𝑐𝑖 ≠ 0, there are two branches of 𝛼 that exist: > 1 and
1. As explored by Zhu et al. (2016), sampling on the > 1 branch gives
large ensemble spread, while sampling on the < 1 branch yields the

pposite effect. A 50% random sampling scheme on the two branches
chieves the most stable results in the IEWPF, but the results are under-
ispersed in the IEWVPS (Wang et al., 2020). Thus, 𝛼 is sampled on the
1 branch in this study. It should be noted that the proposal density

istribution has a gap as discussed in Zhu et al. (2016), that leads to a
ystematic bias. Skauvold et al. (2019) eliminated this gap by sampling
only on the < 1 branch and moving the particles twice. In this study,
e followed the implementation of the IEWPF of Zhu et al. (2016) for

wo reasons. One reason is that no parameter tuning is required in the
ethod of Zhu et al. (2016), so that it is easy to implement. The other

s that the sampling ratio between the two branches is treated as a way
o tune the ensemble spread.

.2. Estimation of the equal-weights adjustment component

In Eq. (10), the posterior states are divided into two components:
he first, 𝐱𝑎,0∶𝑛𝑖 , is the deterministic part, and the second, 𝛼1∕2𝑖 𝐏1∕2

𝑖 𝝃0∶𝑛𝑖 ,
which we refer to is the equal-weights adjustment part. Once 𝛼𝑖 is
solved, 𝐱𝑎,0∶𝑛𝑖 that satisfy the equal-weights property can be found using
Eq. (10). However, 𝐏1∕2

𝑖 is impossible to calculate directly due to the
high dimensions. Thus, we have to estimate 𝐏1∕2

𝑖 𝝃0∶𝑛𝑖 indirectly, mean-
ing that we need to first know the structure of 𝐏 in the ROMS 4D-Var
system. The ROMS weak-constraint 4D-Var method is an incremental
4D-Var method that is solved in the observation space (Moore et al.,
2011b). The entire cost function of the ROMS weak-constraint 4D-Var
method (for a time window [0, 𝑛]) can be written as follows:

𝐽 (𝛿𝐱0, 𝜼1,… , 𝜼𝑛) = 1
2
‖

‖

‖

𝛿𝐱0‖‖
‖

2

𝐁−1
𝑥

+ 1
2

𝑛
∑

𝑘=1

‖

‖

‖

𝐝𝑘 −𝐇𝛿𝐱𝑘‖‖
‖

2

𝐑−1
𝑘

+ 1
2

𝑛
∑

𝑘=1

‖

‖

‖

𝜼𝑘‖‖
‖

2

𝐐−1
𝑘

(17)

where 𝐱 represents the model states of ROMS, which includes the po-
tential temperature, salinity, sea surface height and velocities, 𝛿𝐱 means
the increments of state vector 𝐱, 𝜂 is the model error, 𝐁𝑥 represents the
background error covariance matrix of the initial condition, 𝐐𝑘 is the
model error covariance matrix at time 𝑘, and 𝐑𝑘 is the observation error
covariance at time 𝑘. The vector 𝐝𝑘 = 𝐲−(𝐱𝑘) is the innovation vector
at time 𝑘.  is an observation operator that transforms the model state
vector to the observed variables in the observation space, and 𝐇 is the
tangent linearization of .

To obtain the expression of 𝐏, we introduce the control vector,
𝛿𝐳 = ((𝛿𝐱0)𝑇 ,… , (𝜼𝑘)𝑇 ,…)𝑇 , where 𝑘 = 1,… , 𝑛 and rewrite the cost
function in a compact form, as follows (Moore et al., 2011b):

𝐽 (𝛿𝐳) = 1
2
𝛿𝐳𝑇𝐃−1𝛿𝐳 + 1

2
(𝐝 −𝐆𝛿𝐳)𝑇𝐑−1(𝐝 −𝐆𝛿𝐳) (18)

here 𝐆 = (… , (𝐇𝐌𝑘)𝑇 ,…)𝑇 is considered as a combined forward
odel and observation operator, which propagates the initial state

orward in time to match the observation time through tangent linear
odel (𝐌). The vector 𝐝 = (… , (𝐝𝑘)𝑇 ,…)𝑇 is the innovation vector
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over the assimilation window. 𝐃 and 𝐑 are block diagonal matrices,
as expressed below.

𝐑 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐑1 ⋯
𝐑2

⋱
𝐑𝑛

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐃 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐁𝑥
𝐐1

⋱
𝐐𝑛

⎞

⎟

⎟

⎟

⎟

⎠

In this study, 𝑅𝑘 is considered to be a diagonal matrix at time 𝑘.
𝐁𝑥 is assumed to be factorized as 𝐁𝑥 = 𝐊𝑏Σ𝑥𝐂Σ𝑇

𝑥𝐊
𝑇
𝑏 , where 𝐊𝑏 is the

balance operator, 𝐂 is a univariate correlation matrix and Σ𝑥 is the
matrix of prior standard deviations for all control variables (as shown
in Fig. 3d and f for SSH and SST, respectively). 𝐐𝑘 is assumed to have
the same structure as 𝐁𝑥 (Moore et al., 2011a), but Σ𝑞 = 0.05 ∗ Σ𝑥.

In the formulation of Eq. (18), the Hessian matrix 𝐒𝐻 is the second
derivative of the cost function 𝐽 (𝛿𝐳).

𝐒𝐻 = 𝐃−1 +𝐆𝑇𝐑−1𝐆 (19)

The analysis error covariance matrix is the inverse of 𝐒𝐻 (Fisher and
Courtier, 1995).

𝐏 = (𝐃−1 +𝐆𝑇𝐑−1𝐆)−1 (20)

where time dimension is included in 𝐃, 𝐆, 𝐑 and 𝐏. If the model
dimension is 𝑁𝑥 and the length of time window is 𝑛, the dimension
of the control vector is 𝑁𝑧 = 𝑁𝑥 × (𝑛 + 1). Thus, the dimension of 𝐏 is
𝑁𝑧×𝑁𝑧, which is the same as that of 𝐃. If the dimension of observations
is 𝑁𝑦 over the time window, the dimensions of 𝐑 and 𝐆 are 𝑁𝑦×𝑁𝑦 and
𝑁𝑦 × 𝑁𝑧, respectively. In a high dimensional system, 𝐏 and 𝐃 cannot
be calculated and inverted explicitly. Therefore, we have to estimate 𝐏
indirectly and use it implicitly. We only need 𝐏1∕2𝝃0∶𝑛 for each particle;
the dimension of 𝐏1∕2𝝃0∶𝑛, 𝑁𝑧 × 𝑁𝑒, is much smaller than those of 𝐏
and 𝐏1∕2. We can estimate 𝐏1∕2𝝃0∶𝑛𝑖 using a random method that was
reported in Wang et al. (2020) as follows.

Extracting 𝐃−1∕2 out of the parentheses, we get:

𝐏 = (𝐃−𝑇 ∕2𝐃−1∕2 +𝐆𝑇𝐑−1𝐆)−1

=
{

𝐃−𝑇 ∕2[𝐼 + 𝐃𝑇 ∕2𝐆𝑇𝐑−1𝐆𝐃1∕2]𝐃−1∕2}−1

= 𝐃1∕2[𝐼 + (𝐑−1∕2𝐆𝐃1∕2)𝑇 (𝐑−1∕2𝐆𝐃1∕2)]−1𝐃𝑇 ∕2 (21)

Performing a singular value decomposition (SVD) of 𝐑−1∕2𝐆𝐃1∕2:

𝐑−1∕2𝐆𝐃1∕2 = 𝐔𝐒𝐕𝑇 (22)

where 𝐔 and 𝐕 are orthogonal unitary matrices containing the left and
right singular vectors respectively, and 𝐒 contains the singular values
ordered in descending order of magnitude.

We then obtain the following expression for 𝐏1∕2.

𝐏 = 𝐃1∕2[𝐈 + 𝐕𝐒𝐔𝑇𝐔𝐒𝐕𝑇 ]−1𝐃𝑇 ∕2

= 𝐃1∕2𝐕(𝐈 + 𝐒2)−1𝐕𝑇𝐃𝑇 ∕2

𝐏1∕2 = 𝐃1∕2𝐕(𝐈 + 𝐒2)−1∕2 (23)

We cannot calculate 𝐏1∕2 directly using Eq. (23), since large matrix
operations are needed and 𝐆 is difficult to be expressed explicitly.
Instead of using Eq. (23), we use a random method.

For convenience, we define the ensemble of 𝝃0∶𝑛 as 𝝃 =
[𝝃0∶𝑛1 ,… , 𝝃0∶𝑛𝑁𝑒

], and introduce 𝐪0(𝑖, ∶) = [𝐆𝐃1∕2𝝃𝑖−𝐆𝐃1∕2𝝃], 𝑖 = 1,… , 𝑁𝑒,
where 𝑁𝑒 = 40 is the ensemble size used in our study. The overline rep-
resents the ensemble mean. Instead of performing SVD on 𝐑−1∕2𝐆𝐃1∕2,
we perform SVD on 𝐑−1∕2𝐪0 = 𝐔𝐒𝐕𝑇 . The random component, 𝐏1∕2𝝃,
an be expressed as follows.
1∕2𝝃 = 𝐃1∕2𝝃𝐕(𝐈 + 𝐒2)−1∕2 (24)

The dimensions of 𝐑−𝟏∕𝟐𝐆𝐃𝟏∕𝟐 are 𝑁𝑦 × 𝑁𝑧 in Eq. (23), and the
imension of 𝐑−1∕2𝐪0 are 𝑁𝑦×𝑁𝑒 in Eq. (24); the latter is much smaller
han the dimensions of 𝐃 or 𝐏 since the observation dimensions is
uch smaller than the model dimension. This kind of situation usually

ccurs in ocean data assimilation. In Eq. (24), 𝐃1∕2, 𝐆 and 𝐑 perform
4

Fig. 1. Estimation of the analysis error covariance square root 𝑃 1∕2𝜉. The subscript
of 𝜉 denotes the particle, and the superscript denotes the time index. The TLROMS
represents the ROMS tangent linear model.

as operators and there is no need to explicitly calculate these values,
so large matrix operations can be avoided. The calculation process flow
chart is shown in Fig. 1. As shown, 𝐃1∕2𝝃0∶𝑛𝑖 appears twice; therefore,
we store it in a netcdf file after the first use. Overall, the whole IEWVPS
process includes 4 steps:
(1) Run a weak-constraint 4D-Var for each particle, and then store the
minimum of the cost function (min 𝐽𝑖), as well as the initial condition
𝐱0𝑖 at the beginning of time window;
(2) Calculate 𝛼 in Eq. (15) using the Newton iterative method.
(3) Estimate the random part of each particle, 𝐏1∕2𝝃𝑖, according to the
rocess shown in Fig. 1, then multiply it with 𝛼1∕2 to generate the
qual-weights adjustment component;
4) Move each particle from the mode of the proposal density to the
qual-weights position according to Eq. (10). This is done by integrat-
ng the nonlinear model from 𝐱0 to time 𝑛 using the equal-weights
djustment component as a forcing term.

We know that the optimization of 4D-Var is across the entire time
indow, so that particles sampled in the IEWVPS are from a set of 4D

rajectories that are valid at each time step throughout the window, not
nly at the beginning of the time window. Therefore, the equal-weights
djustment component operates on each model time step practically
nd theoretically. Although we only mentioned the initial condition
0 at the beginning of the time window in step (1) above, the 4D
rajectories of the 4D-Var minimization can be obtained by integrating
he nonlinear model  with the model error 𝜼 as follows,

𝐱𝑘 = 𝑘,𝑘−1(𝐱𝑘−1) + 𝜼𝑘 (25)

It should be noted that the model error is assumed to be additive and
not state-dependent in the ROMS weak-constraint 4D-Var, as shown
in Eq. (25).

In step (4), the equal-weights adjustment component across the
whole time window are not directly added to the 4D trajectories of the
4D-Var. The 4D trajectories of the 4D-Var minimization are adjusted
using the equal-weights adjustment component as follows:

𝐱𝑘 = 𝑘,𝑘−1(𝐱𝑘−1) + 𝜼𝑘 + 𝛼1∕2𝐏1∕2𝝃𝑘 (26)
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Fig. 2. Schematic diagram of the IEWVPS process on each time step for each particle. ‘‘a’’ means ‘‘analysis’’, ‘‘e’’ mean ‘‘equal-weights’’. Blue arrows denote the modifications
made by the model error and red arrow denotes the modifications made by the equal-weights adjustment component. In this figure, 𝜷𝑘 = 𝛼1∕2𝑷 1∕2𝝃𝑘.
Fig. 3. Validation of the sea surface height (SSH) and sea surface temperature (SST) using a 9-year (2008–2016) model free run. (a) The mean dynamic topography obtained
from CMEMS with an offset removed (unit: m); (b) the mean sea surface height obtained from ROMS free run without any data assimilation (unit: m); (c) the climatic monthly
standard deviations of SSH for October obtained from CMEMS (unit: m); (d) the climatic monthly standard deviations of SSH for October obtained from the ROMS free run (unit:
m); (e) the climatic monthly standard deviations of SST for October obtained from AVHRR (unit: ◦C); (f) the climatic monthly standard deviations of SST for October obtained
from the ROMS free run (unit: ◦C).
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The IEWVPS process on each time step for each particle is shown
in Fig. 2. It should be noted that the adjustment of 𝜼𝑘 and 𝛼1∕2𝑷 1∕2𝝃𝑘

ould be in opposite direction, e.g., the 𝑡3 and 𝑡𝑘 in Fig. 2.

3. Experiment setups

3.1. ROMS configuration

The model domain spans from 105 ◦E to 128 ◦E and from 15 ◦N
o 24 ◦N with a horizontal resolution of 1/6◦ and 24 vertical levels.
his is an eddy-permitting resolution that can resolve both large scale
irculation and mesoscale eddies. The surface layers in the model
re weakly nonlinear, which fits the linear and Gaussian assumptions
f the EnKF and variational methods. As mentioned by Chen et al.
2020b), this relatively low resolution is more feasible for the EnKF
nd variational methods but may be challenging for particle filters due
o the high dimension of the system. Thus, we can use this resolution
o test the performance of the IEWVPS in weakly nonlinear situations.
 A

5

A model free run was initialized using the initial conditions obtained
rom HYCOM-NCODA (Hybrid Coordinate Ocean Model–Navy Coupled
cean Data Assimilation; Metzger et al. (2014)) product on 1 Jan,2007,
nd the model was integrated for 10 years (without any data assimila-
ion), with atmospheric forcings obtained from ECMWF ERA-interim
atasets (include windstress, heat flux and freshwater flux) and open
oundary conditions obtained from the HYCOM-NCODA product. There
re 4 purposes for this real simulation: (1) to validate the model before
ata assimilation (Fig. 3); (2) to derive statistics regarding the climatic
ackground error standard deviation, which is important for 4D-Var
Fig. 3d and f for SSH and SST); (3) to provide a mean sea surface
eight (Fig. 3b) for satellite sea level anomaly (SLA) assimilations; and
4) tp provide a dynamical balanced initial condition for assimilation
xperiments.

The climatic monthly mean values and standard deviations of the
ea surface height (SSH) and sea surface temperature (SST) (Fig. 3)
ere used for the model validation (without any data assimilation).
s shown in Fig. 3, ROMS successfully captured the large scale SSH
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Table 1
Experimental design.

Experiment Ensemble size Observations

IEWVPS 40 SST+SLA
En4DVAR 40 SST+SLA
WCPSAS 1 SST+SLA

Fig. 4. The process of the continuous data assimilation using the IEWVPS. The
overlapping boxes represent the ensemble members. The left panel is the assimilation
cycle 𝑀 − 1, the middle panel is the assimilation cycle 𝑀 , and the right panel is the
assimilation cycle 𝑀 + 1. The prior at the current assimilation cycle 𝑀 are from the
states at the end of previous assimilation cycle 𝑀 − 1.

attern, as well as the variabilities in SSH and SST in the northern South
hina Sea (NSCS); this pattern and these variabilities are coincident
ith the satellite observations.

.2. Data assimilation experiments

To test performances of the IEWVPS, satellite-derived SSH and SST
bservations are assimilated using the IEWVPS method, and two addi-
ional experiments were designed (Table 1). En4DVAR is an ensemble
f perturbed weak-constraint 4D-Var similar to the EDA strategy of
CMWF (Bonavita et al., 2017). The WCPSAS experiment uses a single
eak-constraint 4D-Var. En4DVAR and IEWVPS are ensemble methods,
ut WCPSAS is not. The difference between IEWVPS and En4DVAR is
hat an equal-weights adjustment step exists in the IEWVPS, making the
hole system a practical particle filter data assimilation system. From
practical perspective, the model error cannot be neglected; thus, we

o not use the strong-constraint 4D-Var (strong-constraint assumes that
he model error is perfect and without error).

The SSH data were delayed time and gridded maps of sea level
nomaly (MLSA) from Copernicus Marine Environment Monitoring
ervice (CMEMS). The SST data were gridded version 2 AVHRR-only
roducts obtained from NOAA; these data were developed using op-
imum interpolation and included a large-scale adjustments of satel-
ite biases with respect to the in situ data collected from ships and
uoys (Reynolds et al., 2007). Both the SSHs and SSTs are Level 4
roducts and are available daily with a horizontal resolution of 1/4◦.
lthough the observation errors in gridded products are never uncor-
elated in the actual nature, we still assume that observation errors
re uncorrelated in space and time for simplicity, which leads to the
6

act that the observation error covariance, 𝐑, is a diagonal matrix. The
observation error is assumed to be a combination of the measurement
error and the representation error, which are additive. Measurement
errors are considered to be independent of the data source and have the
following standard deviations (Moore et al., 2011a): 0.4 ◦C for SST and
2 cm for SSH. The representativeness error is measured by the standard
deviation of the observations that contribute to each super observation.
To diminish long-distance false dependencies, the decorrelation length
scales of the covariance matrix were set to 50 km in the horizontal
direction and 30 m in the vertical direction (Moore et al., 2011a).

Assimilation experiments started from 1 Oct, 2015 and lasted until
30 Nov, 2015, with a 1-day assimilation time window. In the IEWVPS
and En4DVAR experiments, the initial and atmospheric forcing ensem-
ble members were generated through an exact second-order sampling
scheme (Hoteit et al., 2013; Chen et al., 2020b):

𝑋𝑖 = 𝑋 + 𝛽
√

𝑁𝐄𝝐𝑇𝑖 (27)

where 𝑋 represents the ensemble mean of the initial conditions (a 9-
year averaged model state) or atmospheric forcings (windstress and
heat flux in this study). 𝐄 is a matrix whose columns consist of 𝑁 − 1
EOFs (empirical orthogonal functions). The term 𝝐𝑖 is the 𝑖th row of
a 𝑁 × (𝑁 − 1) random matrix with orthogonal columns, and the sum
of columns is zero. 𝛽 is an inflation parameter with a value of 1.0 for
initial conditions, 0.2 for the windstress, and 100 for the heat fluxes.
The ensemble spread of surface net heat flux generated with a factor
100 is approximately 10 W m−2. In all assimilation experiments, the
observations were cycled assimilated into the model (Fig. 4).

4. Results

The northern South China Sea (NSCS) is strongly influenced by
monsoons and the Kuroshio; as a result, the large-scale circulation is
cyclonic with active mesoscale processes. Moreover, the NSCS is also an
area where typhoons generate or pass through frequently. During the
period from 1 Oct to 10 Oct in 2015, Typhoon Mujigae passed through
the NSCS, and the temperature of the upper layers was lowered by
Ekman pumping. In this research, the upper layer states are investigated
and compared among different assimilation experiments. The surface
states at the end of the time window are used for the comparisons,
while the error statistics of forecasts for November, 2015 are also
compared.

4.1. Upper ocean states

The SLA simulations are shown in Fig. 5. For the duration of the
typhoon, the SLA was high in the NSCS (especially along the coast)
and low in the western Pacific. The mesoscale eddies in the three
assimilation experiments are consistent with the observations. The SLA
differences between the three experiments and satellite products are
small (approximately 4 cm), as shown in Fig. 5. Generally, the three
assimilation experiments performed similarly in modeling the SLAs.

When a typhoon crosses the sea, the Ekman pumping induced
by the typhoon can cause dramatic changes in upper-level seawater
temperatures, especially at the sea surface. This SST cooling is shown
in Fig. 6 comand exceeds 1 ◦C around the studied typhoon track. The
cooling patterns output in the three experiments are similar during the
cooling period (before 5 Oct). Large differences appeared on 5 Oct, and
the SST cooling was strongest in the IEWVPS experiment and remained
consistent with the AVHRR SSTs, while a warm bias existed in the
En4DVAR experimental outputs. The WCPSAS performed similarly to
the IEWVPS in modeling SST cooling; however, the SSTs tended to be
overly high in the northeastern part of the modeled region (Fig. 6b).
After 5 Oct, the SSTs began to recover, and large biases can be seen
in the western Philippines in the WCPSAS experiment (Fig. 7b). The
En4DVAR experiment performed better than the WCPSAS experiment,
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Fig. 5. Analysis SLAs at the end of the time window during 3 Oct and 5 Oct, 2015. Each column represents a different date. Panel (a) shows SLAs from CMEMS; panel (b) shows
the differences in the SLAs between the WCPSAS and CMEMS; panel (c) shows the difference in the SLAs between the En4DVAR and CMEMS; and panel (d) shows the difference
in the SLAs between the IEWVPS and CMEMS. The solid line indicates the best track of Typhoon Mujigae. The numbers are mean RMSDs (unit: cm).
Fig. 6. Analysis SST cooling at the end of the time window relative to 1 Oct 2015. Each column represents a different date with panel (a) reflecting the AVHRR product; (b)
eflecting the differences in SST cooling between the WCPSAS outputs and AVHRR product; (c) showing the differences in SST cooling between the En4DVAR outputs and AVHRR
roduct;(d) showing the differences in SST cooling between the IEWVPS outputs and AVHRR product. The black line represents the −1 ◦C isotherm. The purple solid line shows

the best track of Typhoon Mujegae between 2 Oct and 4 Oct 2015. The numbers are mean RMSDs (unit: ◦C).
but the outputs were still overly high according to the AVHRR products
(Fig. 7c).

The influences of satellite data are not limited to the surface and
can propagate vertically through the cross-correlations of the back-
ground error covariance matrix and move forward through the model
dynamics. The temperatures along Typhoon Mujigae track are shown
in Fig. 8. Although the SST cooling reflected in the WCPSAS outputs
was similar to that output by the En4DVAR and IEWVPS before 5
Oct, the temperature changes output by the WCPSAS in the upper 100
7

m were worse than those of the En4DVAR and IEWVPS. Compared
with En4DVAR, the temperatures obtained from IEWVPS were cooler
in upper 50 m and warmer below 100 m (Fig. 9), indicating that the
Ekman pumping effect was more significant in the IEWVPS experi-
ment than in the En4DVAR experiment. Compared with the observed
SSTs, the temperatures near 119 ◦E tended to be overly high in the
WCPSAS and En4DVAR outputs; these high temperatures also existed
in the deterministic part of the IEWVPS and were improved after an
equal-weights adjustment in the IEWVPS (Fig. 9). As a result, the
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Fig. 7. Analysis SSTs at the end of the time window from 6 Oct to 8 Oct 2015. Each column represents a different date with row (a) representing the AVHRR products; (b)
evealing the differences between the WCPSAS outputs and AVHRR products; (c) showing the differences between the En4DVAR outputs and AVHRR products; (d) indicating the
ifferences between the IEWVPS outputs and AVHRR products. The black line shows the best track of Typhoon Mujegae between 2 Oct and 4 Oct 2015. The numbers are mean
MSDs (unit: ◦C).
Fig. 8. Temperature cross-sections along the typhoon track (unit: ◦C). Each column represents a different date and each row represents a different method: (a) WCPSAS; (b)
En4DVAR; (c) IEWVPS. The black line is the 27.5 ◦C) isotherm, and the gray line is the 28.3 ◦C) isotherm.
temperatures near 119◦E in the IEWVPS outputs were cooler than those
output by the En4DVAR (Fig. 9). It should be noted that the large biases
on 2 Oct are mainly caused by the initial ensemble generation scheme
calculated through Eq. (27). When assimilating SSTs, the error tends to
be largest at the thermocline (at a depth of approximately 100 m) (Luo
et al., 2017); this is caused by the net heat input when correcting the
cold bias in the mixed layer (Shu et al., 2009).

4.2. Error statistics

The above analyses are qualitative; we also quantitatively compared
the three experiments. To make the comparisons more effective and
8

convincing, the assimilation period was extended to 2 months (from 1
Oct to 30 Nov 2015). However, only the results obtained in November
2015 were compared to exclude the influence of the initial ensemble
generated using Eq. (27). The root mean square deviations (RMSDs)
of the analysis states at the end of the assimilation window (that is 𝑡𝑛
for a window [0, 𝑛]) and the 1-day forecast states were calculated, as
shown in Fig. 10. The RMSDs of the SSHs output in the IEWVPS and
En4DVAR experiment were equivalent and slightly smaller than those
output in the WCPSAS experiment (Fig. 10a and c). For the SSTs, the
RMSD at the end of the assimilation window in the IEWVPS experiment
was 0.1 ◦C (Fig. 10b), which was smallest among the three experiments
and corresponded to a reduction of 52.6% (relative to the En4DVAR
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Fig. 9. Temperature differences between the IEWVPS and En4DVAR outputs along the track of Typhoon Mujigae from 2 Oct to 9 Oct 2015 (unit: ◦C).
Fig. 10. RMSDs of the output SSHs (left panel) and SSTs (right panel). Subgraphs (a) and (b) show the analysis states at the end of the assimilation time window; subgraphs (c)
nd (d) show the 1-day forecast states.
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MSD). The SST RMSD of the 1-day forecast (Fig. 10d) was larger than
hat of the analysis states at the beginning of the assimilation window,
s was expected. Compared with the En4DVAR experimental outputs,
he SST RMSD of the 1-day forecast in the IEWVPS experiment was
educed by approximately 10.5%.

To compare the three experiments more clearly, the RMSD time
eries shown in Fig. 10 were used to draw box plots (Fig. 11). Consistent
ith Fig. 10, the SSH RMSDs in the three experiments are at the

ame level. Among the three methods, the SST RMSD of the analysis
nd 1-day forecast are the smallest in the outputs of the IEWVPS
xperiment.

To be more objective, we also compared the output SSTs with
SACCI (European Space Agency Sea Surface Temperature Climate
hange Initiative; Merchant et al. (2019)) and UKMO SST (Good et al.,
020) products, as shown in Fig. 12. Since the horizontal resolutions
f the ESACCI and UKMO SST products are 1/20◦ and our model
 a

9

resolution was 1/6◦, we interpolated the ESACCI and UKMO SSTs to
ur model grids. The RMSDs relative to the ESACCI and UKMO SSTs
ere larger than those relative to the AVHRR product. Despite the
ifferences in the SST products, the IEWVPS produced the smallest
MSD among the three assimilation experiments. At the end of the
ssimilation window, the SST RMSD of the IEWVPS was reduced by
2.1% (ESACCI) and 12.3% (UKMO) compared to the En4DVAR values
Fig. 12). For the 1-day forecast, the SST RMSD of the IEWVPS was re-
uced by 6.7% (ESACCI) and 6.2% (UKMO) compared to the En4DVAR
alues.

In general, the SSH RMSDs of the three assimilation experiments
ere similar and the SST RMSDs in the IEWVPS experiment were

he smallest, especially for the analysis states at the end of the time
indow. During the 1-day forecast step, the RMSDs increased for both
SHs and SSTs. One factor affecting this result is that large biases
ppear at open boundaries, as shown in Figs. 5 to 7. The other factor
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Fig. 11. Box plots of the RMSDs of the SSHs (left panel) and SSTs (right panel). Subgraphs (a) and (b) show the analysis states at the end of the assimilation time window;
ubgraphs (c) and (d) show the 1-day forecast states.
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s that the model error is not considered during the forecast step.
iven the same atmospheric forcing and open boundary conditions, the
MSDs of the forecasts are dependent on the initial conditions which
re characterized by the analysis states at the end of the time window
Fig. 10c and d).

For the purpose of understanding how the equal-weights adjustment
omponent works, we compared the biases of the SSTs; the bias is
he mean value of the distances between observations and the model-
imulated values, (𝑦−𝐻(𝑥)), and is shown in Fig. 13. There are at least

four sources accounting for the biases in our experiments: the initial
conditions, perturbed atmospheric forcing, open boundary conditions
and model errors. As shown in Fig. 13a, the bias in the initial conditions
is very small (a mean value of approximately 0.002 ◦C), so the initial
conditions can be excluded from the sources of biases. However, as
the model is forced by perturbed atmospheric forcings, open boundary
conditions and model errors, the bias becomes larger when the model
propagates over time. Thus, the output SSTs were biased at the end of
the time window in the En4DVAR experiment (with a mean value of
0.1 ◦C), and a similar pattern was found in the WCPSAS experiment.
We can see that the bias in the IEWVPS experiment was very small
even at the end of the time window (Fig. 13b), and the mean value was
approximately 0.007 ◦C. The SST bias in the En4DVAR experiment is
approximately 0.093 ◦C greater than that of the IEWVPS experiment.
This bias deviation was close to the 0.1 ◦C deviation in the RMSDs
alculated between the En4DVAR and IEWVPS experiments.

The rank histograms of the one-model run experiment conducted
or November 2015 were also compared, as shown in Fig. 14. The rank
istograms were generated by ranking the observations in the set of
he state ensemble members from lowest to highest. A left-extreme
attern was found in the En4DVAR experiment (Fig. 14a), indicating
10
a positive bias (Hamill, 2001). In the IEWVPS experiment, slightly U-
shaped rank histograms indicated that the ensemble spread was slightly
smaller than the RMSD. Together with Fig. 13, we can conclude that
the equal-weights adjustment components can reduce the bias at the
end of the time window. We know that the full particle weight of each
particle consists of the proposal weight and the likelihood weight. The
implicit equal-weights scheme ensures that the full weights are equal
for all particles, which introducing more freedom in the IEWVPS than
the En4DVAR to fit the observations.

4.3. An additional experiment

The above analyses are based on Typhoon Mujigae, which occurred
in 2015 and whose track was almost a straight line. In reality, some ty-
phoons may turn to the north, exhibiting complex air–sea interactions,
Typhoon Megi, which occurred in 2010, was one of these. One trial is
not enough to show the advantages of the IEWVPS. Thus, we performed
the same experiments as those described above for Typhoon Megi in
2010. The largest SST cooling occurred on 22 and 23 Oct, as shown in
Fig. 15. The SST cooling in the IEWVPS experiment was closer to the
AVHRR products than those in the En4DVAR experiment, especially
the −2 ◦C isotherm. The RMSDs of the SSHs and SSTs are shown in
ig. 16. The RMSD of SSHs in the IEWVPS experiment was equivalent to
hat in the En4DVAR, but the RMSD of SST in the IEWVPS experiment
as much smaller than that in the En4DVAR experiment. Since the
nsemble spread is a measure of the uncertainty in the data assimilation
ethod it is better to have a slightly too large spread than a too small

pread. The ratios of the RMSDs to the ensemble spreads for the SSHs
nd SSTs output by the IEWVPS were slightly larger than 1.0, indicating
hat the ensemble is under-dispersed. Similar to the case of Typhoon
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Fig. 12. SST RMSDs relative to the ESACCI (left panel) and UKMO (right panel) SST products. ESACCI: European Space Agency Sea Surface Temperature Climate Change
Initiative (Merchant et al., 2019); UKMO: United Kingdom Meteorological Office (Good et al., 2020). Subgraphs (a) and (b) show the analysis states at the end of the assimilation
time window; subgraphs (c) and (d) show the 1-day forecast states.
Fig. 13. SST biases in the observation space. (a) Biases of SSTs at the beginning of the time window; (b) Biases of SSTs at the end of the time window. IEWVPS s1 and s2
epresent the ocean states before and after the equal-weights adjustment, respectively. Note that IEWVPS s1 is same as IEWVPS s2 in the panel (a).
ujigae, a warm bias existed at open boundary and propagated to the
nterior ocean (Fig. 6b and Fig. 7b).

. Discussions and conclusions

In this study, the implicit equal-weights variational particle smooth-
r (IEWVPS) method was implemented in the Regional Ocean Modeling
ystem (ROMS) and was applied to the assimilation of ocean satel-
ite data. The key problem we solved in the implementation of the
EWVPS into ROMS is the estimation of the equal-weights stochastic
djustment component. We used an implicit random mapping method
o estimate the perturbation component which was represented through
he tangent linear model, and then combined this component with
he equal-weights parameter 𝛼. The IEWVPS uses a modified weak-
onstraint 4D-Var framework as the proposal transition density in a
tandard implicit equal-weights particle filter (IEWPF). This method
ombines the merits of the weak-constraint 4D-Var and the IEWPF:
t reduces the RMSD by applying the weak-constraint 4D-Var as the
11
proposal density, and prevents filter degeneracy by using an implicit
equal-weights sampling scheme.

To verify the effects of the IEWVPS method, we tested the responses
of the upper ocean variables during a typhoon case study before and af-
ter the assimilation of ocean satellite data. Satellite remote sensing SST
and SSH observations in the northern South China Sea area were assim-
ilated in the experiments, and the results of the IEWVPS were compared
with those of the En4DVar method and ROMS weak-constraint 4D-Var
(WCPSAS). The SSH RMSDs were equivalent among three assimilation
experiments, while the SST RMSDs in the IEWVPS experiment was the
smallest for both the analysis (at the end of the time window) and 1-
day forecasts. Because the RMSDs were reduced at the end of the time
window, the SST RMSDs of the 1-day forecast derived from the IEWVPS
experiment were reduced by 10.5% (AVHRR), 6.7% (ESACCI) and
6.2%(UKMO) relative to the results of En4DVAR experiment. Therefore,
the temperature cooling induced by Ekman pumping in the upper 50
m was best characterized in the IEWVPS experiment. However, the

largest improvement did not occur during typhoon activity over the
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Fig. 14. The rank histograms of SSTs obtained from one-model run from 1 Nov to 30 Nov 2015. IEWVPS s1 and s2 represent the ocean states before and after the equal-weights
adjustment, respectively.
Fig. 15. SST cooling relative to that on 18 Oct, 2010 (unit: ◦C). The black line is the −1 ◦C isotherm, and the white line is the −2 ◦C isotherm. (a) AVHRR SST product; (b)
the SST cooling difference between the En4DVAR outputs and AVHRR product; (c) the SST cooling difference between the IEWVPS outputs and AVHRR product.
sea, but occurred after the typhoon made landfall over China. Excessive
temperature arose at open boundaries in the En4DVAR and WCPSAS
experiments; this situation was relieved in the IEWVPS experiment.
The bias existed at open boundaries is one of the reasons why the
RMSDs were increased in the 1-day forecasts. Another reason is that the
12
model errors are considered during the assimilations but are neglected
during the forecasts. To improve the forecasts, model error should be
accounted for, such as by using the stochastically perturbed param-
eterization tendencies (SPPT) or stochastic kinetic energy backscatter
(SKEB) schemes in the model as done in ECMWF (Bonavita, 2011).
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Fig. 16. Error statistics of SSH (left panel) and SST (Right panel). Top panel: RMSD; Bottom panel: the ratio of RMSD to ensemble spread.
c
To increase the ensemble spread, an exact second-order sampling
cheme (Hoteit et al., 2013; Chen et al., 2020b) was adopted for the
tmospheric forcings. One drawback of this scheme is that the choice
f inflation parameter is artificial. The inflation parameter was 0.2 for
he windstress and 100 for the heat fluxes; these values are not optimal.
he other drawback is that the independent choices of inflation param-
ters for different variables (windstress and heat fluxes in our study)
ay lead to inconsistent statistical results among variables. Another
rawback of the perturbation scheme used in our study is that the
ovariance of atmospheric forcing is static and cannot reflect the high
requency variabilities in the atmosphere. To improve the ensemble
uality, the perturbation scheme for atmospheric forcing should be
tudied further, and the uncertainty at open boundaries should also
e considered. The ensemble spread is also influenced by the sampling
atio of 𝛼 on the > 1 and < 1 branches (Zhu et al., 2016). However, the
> 1 solution is spurious, which is leading to a systematic bias. This

ystematic bias can be eliminated by the two-stage IEWPF proposed
y Skauvold et al. (2019). Then, the ensemble spread will be dependent
n a different parameter 𝛽. We will replace the implicit equal-weights
cheme according to Skauvold et al. (2019) and investigate an adaptive
cheme for 𝛽 to improve the ensemble quality.

The computational cost of the IEWVPS is slightly larger than that
of the En4DVAR, since the IEWVPS is based on the En4DVAR (a set of
weak-constraint 4D-Var). Additional costs for each particle are needed
to calculate of the equal-weights adjustment component, including 𝛼𝑖
nd 𝐏1∕2𝝃0∶𝑛𝑖 . In total, an additional TL (tangent linear) model inte-
ration is needed for the calculation of the equal-weights adjustment
omponent and a NL (nonlinear) model integration is needed to move
ach proposal particle to its equal-weight position for each particle;
hese computational costs are relatively small compared to the total
ost of each 4D-Var (2 NL integrations, 30 TL integrations and 30
djoint model integrations). As shown in Fig. 1, we need to calculate
nd deliver 𝐃1∕2𝝃0∶𝑛. The assimilation window in our study is 1 day,
hich equals 120 model steps (one time step is 720 s); thus, we
eed to deliver 𝑛 = 120 𝐃1∕2𝝃 for each particle as outputs. If the
ssimilation window is very long or the time step is very small, this
ost will become larger. One method used to reduce this cost involves
elivering 𝐃1∕2𝝃 outputs every 𝑀 model steps; which in our study,
= 15 (equivalent to 3 h in the simulation). The total computational

ost of the IEWVPS scheme was divided into Fortran and MATLAB
13
omponents. The MATALB components include the calculation of 𝛼𝑖
and SVD on 𝐑−1∕2𝐪0. The computational cost of the Fortran component
is 910.83 seconds/particle in one cycle and the cost of the MATLAB
component is less than 60 s, while the computational cost of each
4D-Var is 852.18 s. Therefore, the additional computational cost is
approximately 120 s for each particle, an increment of approximately
14% (relative to cost of the 4D-Var). The MATLAB components will be
rewritten in Fortran language, thus further reducing the computational
cost.

One advantage of the IEWVPS is that the equal-weights stochastic
adjustment component maintains the model dynamic balance because
of the balance operator in 4D-Var and the balanced theoretical implicit
equal-weights sampling framework. We know that the major advantage
of the EnKF is the flow-dependent background error covariance matrix.
Therefore, one drawback in our study is that the background error
covariance matrix (𝐁) is climatological and static. Furthermore, a flow
dependent 𝐁 matrix based on the PF and 4D-Var method will be
investigated in the future.
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